• Title/Summary/Keyword: Tilting train carbody

Search Result 64, Processing Time 0.029 seconds

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

Product Data Management for The system Engineering of Train Tilting express (고속 틸팅 차량설계를 위한 전산통합 환경 구축 연구)

  • Han, Seong-Ho;Song, Yong-Su
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.65-69
    • /
    • 2004
  • Abstract Tilting train has been developed to increase the oprational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data management) to make a system engineering of TTX(Tilting Train eXpress) with maximum operation speed 180 km/h.

  • PDF

The Development Plan of TTX Hybrid Carbody Structures and Study on Foreign Cases (TTX 하이브리드 차체 개발 방향과 국외 사례 분석)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.34-37
    • /
    • 2004
  • Tilting trains could offer a low cost solution as they can be operated on existing track and attain higher speeds (as compared to conventional trains) thanks to a mechanism that tilts the vehicle body of the train when negotiating curves, thus giving it additional superelevation Also, the weight saving of the carbody structures of the tilting train is a significant problem to operate the tilting mechanism without failure and to minimize wear and tear on wheels and rails. Therefore, the TTX will be developed using hybrid design concept to match the challenging demands with respect to cost efficient lightweight design for carbody structures. Hybrid design helps to save production costs and to reduce the weight of carbodies.

  • PDF

Design Techniques of Tilting Train(TTX) using the system engineering (PDM) (SE관리기법(PDM)을 이용한 틸팅차량(TTX) 설계기술 연구)

  • Han Seong-ho;Song Yong-su
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data managemnet) to make a system engineering of TTX(tilting train express) with maximum operation speed 180 km/h.

  • PDF

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Yoon Sung-Ho;Lee Eun-Dong;Heo Kwang-Soo;Jung Jeong-Cheol;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

The Study on the Kinematics of Carbody Tilting Mechanism for Railway Vehicles (철도차량용 차체틸팅기구의 기구학적 특성연구)

  • 김정석;김남포;고태환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.384-388
    • /
    • 2004
  • This study presents parametric studies for design of tiling mechanism to be used in 180km/h tilting train. The titling mechanism is composed of 4 links, a tilting bolster and an electro-mechanical actuator. First we have determined the installation height of tilting actuator using 3D tilting bogie modeling. Secondary, we verified movements of the tiling center and train body CG along variation of upper and lower span length. From this study, we obtained the upper and lower span length to minimize the lateral and vertical motion of CG of train body. Finally, we evaluated the tilting actuator force and power required to tilt the train body to $\pm$8$^{\circ}$.

  • PDF

A Study on the Evaluation of the Failure for Carbody Structures made of Laminated Fiber-Reinforced Composite Materials Using Total Laminate Approach (전체 적층판 접근법을 이용한 섬유강화 적층 복합재 차체 구조물의 파손평가 연구)

  • 신광복;구동회
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.18-28
    • /
    • 2004
  • In order to evaluate the strength of carbody structures of railway rolling stock made of laminated fiber-reinforced composite materials, total laminate approach was introduced. Structural analyses were conducted to check the basic design of hybrid composite carbody structures of the Korean Tilting Train eXpress(TTX) with the service speed of 180km/h. The mechanical tests were also conducted to obtain strengths of composite laminates. The results show that all stress components of composite carbody structures are inside of failure envelopes and total laminate approach is recommended to predict the failure of hybrid composite carbody structures at the stage of the basic design.

Development for Tilting Train Dynamics Motion Base

  • Song, Yong-Soo;Shin, Seung-Kwon;Kim, Jung-Seok;Ho, Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom (DOF) motions simulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie, carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions, a motion platform that is constructed by six electric-driven actuators is designed, and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator, and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition, a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail road driving situations discussed in this paper.

  • PDF

Evaluation of Fatigue Strength for Bogie Frame of a Tilting Train (틸팅차량용 대차프레임의 피로강도 평가)

  • Park, Byung-Hwa;Kim, Nam-Po;Kim, Jung-Seok;Lee, Kang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.130-135
    • /
    • 2004
  • The fatigue strength analysis is performed for the bogie frame of Korean tilting train which is newly developed. The loading conditions imposed on the bogie frame during carbody tilting are derived in addition to the loadings based on the JIS E4207 standard. The tilting bogie frame is modeled for the finite element analysis and fatigue analysis is carried out under Goodman equation. It is concluded the bogie frame of the developed tilting train has enough structural safety.

  • PDF