• Title/Summary/Keyword: Tilting pad

Search Result 118, Processing Time 0.02 seconds

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

Expanding the MCS of Refinery Process Compressor through Operating-Speed Balancing at 10,500 rpm (정유공정 압축기의 10,500 rpm 운전속도 밸런싱을 통한 MCS의 확장)

  • Lee, An-Sung;Kim, Byung-Ok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.41-46
    • /
    • 2009
  • This paper deals with the operating-speed (high-speed) balancing of a refinery gasoline HDS (hydrodesulfurization) process recycle-gas 8-stages compressor rotor. A low-speed balancing condition of the rotor was measured as maintaining the G2.5 level. But an inspection run of operating-speed balancing condition, using tilting-pad journal bearings of actual use, showed that while it could be continuously-operated safely at a rated speed of 10,500 rpm, the rotor would not be able to run over 11,000 rpm as the vibration increased very sharply, approaching 11,000 rpm. In order to cure that a series of operating-speed balancing, which first calculated balance correction-weights by applying the influence coefficient measured and calculated at 10,500 rpm and then implemented correction works, was carried-out. The final operating-speed balancing results showed that the vibrations at the bearing pedestals represented very good levels of 0.2 mm/s by decreasing to as much as the 1/10 of the original vibrations and particularly, even at a targeted maximum continuous operating speed, MCS, of 11,500 rpm the vibrations represented about 1 mm/s, which is the operating-speed balancing vibration specification of API. Therefore, the expansion of MCS was successfully accomplished through the operating-speed balancing.

A Study of the Design Technology for Developing a 100kW Class Steam Turbine (100 kW급 증기터빈 설계기술 개발에 관한 연구)

  • Kim, Young-Cheol;Ahn, Kook-Young;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2009
  • Small scale steam turbines are used as mechanical drivers in chemical process plant or power generators. In this study, a design technology was developed for a 100kW class steam turbine which will be used for removing $CO_2$ from the emission gas on a reheated cycle system. This turbine is operated at a low inlet total pressure of $5\;kgf/cm^2$. It consists of two stages and operates at the partial admission. For the meanline analysis, a performance prediction method was developed and it was validated through the performances on the operating small steam turbines which are using at plants. Their results showed that the output power was predicted within 10% deviation although the steam turbines adopted in this analysis were operated at different flow conditions and rotor size. The turbine blades was initially designed based on the computed results obtained from the meanline analysis. A supersonic nozzle was designed on the basis of the operating conditions of the turbine, and the first stage rotor was designed using a supersonic blade design method. The stator and second stage rotor was designed using design parameters for the blade profile. Finally, Those blades were iteratively modified from the flow structures obtained from the three-dimensional flow analysis to increase the turbine performance. The turbine rotor system was designed so that it could stably operate by 76% separation margin with tilting pad bearings.

Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage (에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향)

  • Park, Sang Joon;Lee, Jae Hyeok;Park, Sang-Shin;Kim, Gyu Ha
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.

Analysis of Dynamics Characteristics of Water Injection Pump through the 2D Finite Element (2D 유한요소 해석을 통한 물 분사 펌프의 동특성 분석)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Kim, Jun-Ho;Choi, Hyeon-Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.462-469
    • /
    • 2014
  • After drilling operations at the offshore plant, crude oil is producted under high pressure. After that time, oil recovery is reduced, because the pressure of the pipe inside is low during the secondary produce. At that time injection sea water at the pipe inside through water injection pump that the device increase to recovery. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic at the domestic company. 2D model has reliability of analysis results for the uncomplicated model. Also element and the node the number of significantly less than in the 3D model. So, the temporal part is very effective. In addition, depending on the quality of mesh 3D is a real model and FEM model occurs error. So, user needs a lot of skill. In this paper, a 2D finite element analysis was performed through the dynamics analysis and the study model was validated.

Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing (오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA (LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Kim, Dae-Jung;Kim, Jong-Hyun;Chang, Suk-Sang;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2012
  • This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

Analysis of Integration Factor Effect in Dynamic-Structure-Fluid-Heat Coupled Time Transient Staggered Integration Scheme for Morton Effect Analysis (모튼이펙트 해석을 위한 동역학-구조-유체-열전달 시간과도응답 연성해석 시차적분법에서 시상수 효과 분석)

  • Suh, Junho;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • The present study focuses on the effect of staggered integration factor (SIF) on Morton effect simulation results. The Morton effect is a synchronous rotordynamic instability problem caused by the temperature differential across the journal in fluid film bearings. Convection and conduction of heat in the thin film displaces the hot spot, which is the hottest circumferential position in the thin film, from -20 to 40 degrees ahead of the high spot, where the minimum film clearance is experienced. The temperature differential across the journal causes a bending moment and the corresponding thermal bow in the rotating frame acts like a distributed synchronous excitation in the fixed frame. This thermal bow may cause increased vibrations and continued growth of the synchronous orbit into a limit cycle. The SIF is developed assuming that the response of the rotor-lubricant-bearing dynamic system is much quicker than that of the bearing-journal thermal system, and it is defined as the ratio between the simulation time of the thermal system and the rotor-spinning period. The use of the SIF is unavoidable for efficient computing. The value of the SIF is chosen empirically by the software users as a value between 100 and 400. However, the effect of the SIF on Morton effect simulation results has not been investigated. This research produces simulation results with different values of SIF.