• Title/Summary/Keyword: Tilt System

Search Result 688, Processing Time 0.031 seconds

OPTICAL PROPERTY AND ALIGNMENT OF KAO WIDE FIELD TELESCOPE (NEOPAT-3) (광시야 망원경 3호기 (NEOPAT-3)의 광학계 특성 및 조정)

  • Yuk, In-Soo;Kyeong, Jae-Mann;Yoon, Joh-Na;Yoon, Jae-Hyuck;Yim, Hong-Suh;Moon, Hong-Kyu;Han, Won-Yong;Byun, Yon-Ik;Kang, Yong-Woo;Yu, Sung-Yeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.417-428
    • /
    • 2004
  • We have investigated the optical property of the KAO(Korea Astronomy Observatory) wide field telescope (named NEOPAT-3; Near Earth Object and Satellite Patrol-3) and aligned optical system. The NEOPAT-3 is restricted to V,R,I-filters because of the refractive property of the correcting lens system. Because of the fast focal ratio, the optical performance of the NEOPAT-3 is very sensitive to its alignment factors of the optical system. To make the spot radius smaller than $8{\mu}m$ in rms over 2degree${\times}2$degree field, the optical system must satisfy the following conditions: 1) The tilt error between detector plane and focal plane should be less than 0.05degree. 2) The decenter error between the primary mirror and the correcting lens system should be less than 1mm. 3) The distance error between the primary mirror and the correcting lens system should be less than 2.3mm. In order to align the optical system accurately, we measured the aberrations of the telescope quantitatively by means of curvature sensing technique. NEOPAT-3 is installed temporary on the roof of the TRAO(Taeduk Radio Astronomy Observatory) main building to normalize system performance and to develop automatic observation.

Active Object Tracking System based on Stereo Vision (스테레오 비젼 기반의 능동형 물체 추적 시스템)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.159-166
    • /
    • 2016
  • In this paper, an active object tracking system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and phase-type correlation scheme and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time. Basing on these extracted data the pan/tilted-embedded stereo camera system is adaptively controlled and as a result, the proposed system can track the target adaptively under the various circumstance of the target. From some experiments using 480 frames of the test input stereo image, it is analyzed that a standard variation between the measured and computed the estimated target's height and an error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 1.03 and 1.18% on average, respectively. From these good experimental results a possibility of implementing a new real-time intelligent stereo target tracking and surveillance system using the proposed scheme is finally suggested.

Verticality 3D Monitoring System for the Large Circular Steel Pipe (대형 원형강관 수직도 모니터링을 위한 3D 모니터링 시스템)

  • Koo, Sungmin;Park, Haeyoung;Oh, Myounghak;Baek, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.870-877
    • /
    • 2020
  • A suction bucket foundation, especially useful at depths of more than 20m, is a method of construction. The method first places an empty upturned bucket at the target site. Then, the bucket is installed by sucking water or air into it to create negative pressure. For stability, it is crucial to secure the verticality of the bucket. However, inclination by the bucket may occur due to sea-bottom conditions. In general, a repeated intrusion-pulling method is used for securing verticality. However, it takes a long time to complete the job. In this paper, we propose a real-time suction bucket verticality monitoring system. Specifically, the system consists of a sensor unit that collects raw verticality data, a controller that processes the data and wirelessly transmits the information, and a display unit that shows verticality information of a circular steel pipe. The system is implemented using an inclination sensor and an embedded controller. Experimental results show that the proposed system can efficiently measure roll/pitch information with a 0.028% margin of error. Furthermore, we show that the system properly operates in a suction bucket-based model experiment.

Study a Technique for Reducing the Influence of Scattered Rays from Surrounding Organs to the Heart during Gated Cardiac Blood Pool scan (Gated Cardiac Blood Pool scan에서의 심장 주위 배후방사능 관심영역 설정시 산란선의 영향을 감소시키기 위한 연구)

  • Kim, Jung-Yul;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • Purpose: The Gated cardiac blood pool scan is non-invasive method that a quantitative evaluation of left ventricular function. Also this scan have shown the value of radionuclide ejection fraction measurements during the course of chemotherapy as a predictor of cardiac toxicity. Therefore a reliable method of monitoring its cardiotoxic effects is necessary. the purpose of this study is to minimize the overestimate of left ventricular ejection fraction (LVEF) by modified body position to reduce the influence of scattered rays from surrounding organs of the heart in the background region of interest. Materials and Methods: Gated cardiac blood pool scan using in vivo $^{99m}Tc$-red blood cell (RBC) was carried out in 20 patients (mean $44.8{\pm}8.6$ yr) with chemotherapy for a breast carcinoma. Data acquisition requires about 600 seconds and 24 frames of one heart cycle by the multigated acquisition mode, Synchronization deteriorates toward the end of the cycle and with the distance from the trigger signal (R-wave) by ECG gating. Gated cardiac blood pool scan was studied with conventional method (supine position and the detector head in $30-45^{\circ}$ left anterior oblique position and caudal $10-20^{\circ}$ tilt) and compared with modified method (left lateral flexion position with 360 mL of drinking water). LVEF analysis was performed by using the automatically computer mode. Results: The ROI counts of modified scan method were lower than LV conventional method ($1429{\pm}251$ versus $1853{\pm}243$, <0.01). And LVEF of modified method was also decrease compared with conventional method ($58.3{\pm}5.6%$ versus $65.3{\pm}6.1%$, <0.01). Imaging analysis indicated that stomach was expanded because of water and spleen position was changed to lateral inferior compared with conventional method. Conclusion: This study shows that the modified method in MUGA reduce the influence of scattered rays from surrounding organs. Because after change the body position to left lateral flexion and drinking water, the location of spleen, left lobe of liver and stomach had changed and they could escaped from background ROI. Therefore, modified method could help to minimize the overestimate LVEF (%).

  • PDF

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System (회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증)

  • You, Young-Jin;Choi, Yun-Sung;Jeong, Jin-Seok;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1043-1053
    • /
    • 2016
  • In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.

Development of a New Training System for the Improvement of Equibrilium Sense (평형 감각 증진을 위한 새로운 훈련 장치의 개발)

  • Lee Jung Ok;Park Young Gun;No Pang Hwang;Hong Chul Un;Kim Nam Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.465-469
    • /
    • 2004
  • We propose a new training system for the improvement of equilibrium sense using unstable platform. This system consists of unstable platform, computer interface and various softwares. The unstable platform was a simple structure of elliptical-type which included tilt sensor and wireless RF module. To evaluate the effort of balance training, we measured the parameters such as the moving time to the target and duration to maintain cursor in the target of screen. Balance training was carried out for two weeks and we classified the subjects into two groups by the training program. As a result, the moving time was reduced and duration time was lengthened through the repeating training of equilibrium sense using training program of sine curve trace(SCT) and Block game. Especially, there was remarkable improvement at direction which was too difficult for the subjects to balance their body. It was showed that this system had an effort on improving equilibrium sense and might be applied to clinical use as an effective balance training system.

Operation Model Design of Logistics Industrial estate -Focused on Transportation Network- (물류산업단지의 운영모델 설계 - 운송 네트워크를 중심으로-)

  • Shin, Jae Young;Kim, Woong-Sub
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.214-215
    • /
    • 2013
  • Current competition among companies than regional, the time constraints, it is globalization, Tilt the efforts of many to be operated by building the efficient distribution system to reduce logistics costs and improve customer service it is reality's there. Therefore, the need for industrial complexes environmentally friendly can be cost competitive companies perform cavitation region's increased. To build the distribution center these logistics system through a joint of freight and appropriate policy is required. In particular, efficient operation through the system construction of industrial complexes in the logistics system is very important in terms of friendly low-cost urban logistics, the environment. Since the traffic volume which is Jipufa and utilization of network is transported by a more appropriate technicians and means suitable operating model can efficiency is improved. However, despite these advantages, research network design has not been actively conducted due to the complexity of the problem. Therefore, in this study, by analyzing the logistics system, and presents the operating model through a simulation and basic settings for the model of the logistics complex based on the analysis result, the construction of infrastructure of logistics industry complex it is intended to present the article.

  • PDF

Online Refocusing Algorithm Considering the Tilting Effect for a Small Satellite Camera (위성 카메라의 틸트 효과를 고려한 온라인 리포커싱 알고리즘)

  • Lee, Da Hyun;Hwang, Jai Hyuk;Hong, Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.64-74
    • /
    • 2018
  • Small high-resolution Earth observation satellites require precise optical alignment at the submicron level. However, misalignments can occur due to the influence of external factors during the launch and operation despite the sufficient alignment processes that take place before the launch. Thus, satellites need to realign their optical elements in orbit in what is known as a refocusing process to compensate for any misalignments. Refocusing algorithms developed for satellites have only considered de-space, which is the most sensitive factor with respect to image quality. However, the existing algorithms can cause correction error when inner and external forces generate tilt amount in an optical system. The present work suggests an improved online refocusing algorithm by considering the tilting effect for application in the case of a de-spaced and tilted optical system. In addition, the algorithm is considered to be efficient in terms of time and cost because it is designed to be used as an online method that does not require ground communication.

The effects of increased unilateral and bilateral calcaneal eversion on pelvic and trunk alignment in standing position

  • Yi, Jaehoon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • Objective: Generally, it is known that there is a correlation between excessive calcaneus eversion and a patient with low back pain and it also affects pelvic alignment. However, there are not enough studies that show calcaneal eversion having an effect on the alignment of the trunk. Design: Cross-sectional study. Methods: A 3-dimensional motion analysis system was used to assess the lower limbs, pelvic alignment, and trunk alignment with increased unilateral and bilateral calcaneal eversion in twenty-one subjects. All subjects were asked to maintain a static posture for seven seconds on a wedge three times per posture for measurement and analysis purposes. The wedge used in the process was a lateral wedge with a 10-degree tilt to the lateral direction. To unify all of the subjects' foot position, the front and inner side of the wedge were marked. The height of the tilted wedge's inner side and flat wedge were balanced equally in order to be able to maintain the lateral part of the foot to the same height when producing an increased calcaneal eversion. Results: Comparing the changes in trunk and pelvic alignment in accordance to calcaneal eversion for each posture, there was a significant different in the X and Y-axis for each posture, but not in the Z-axis (p<0.05). Thus, it can be confirmed that calcaneal eversion in the sagittal plane and frontal plane may have and effect on the pelvis and the trunk. Conclusions: Postures with increased bilateral and unilateral calcaneal eversion has an effect on pelvic alignment, but does not cause any changes in trunk alignment.

Supervised Hybrid Control Architecture for Navigation of a Personal Robot

  • Shin, Hyun-Jong;Im, Chang-Jun;Kim, Jin-Oh;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1178-1183
    • /
    • 2003
  • As personal robots coexist with a person with a role to help a person, while adapting various human life and environment, the personal robots have to accommodate frequently-changing or different-from-home-to-home environment. In addition, personal robots may have many kinds of different Kinematic configurations depending on the capabilities. Some may have a mobile base and others may have arms and a head. The motivation of this study arises from this not-well-defined home environment and varying Kinematic configuration. So the goal of this study is to develop a general control architecture for personal robots. There exist three major architectures; deliberative, reactive and hybrid. We found that these are applicable only for the defined environment with a fixed Kinematic configuration. Neither could accommodate the above two requirements. For the general solution, we propose a Supervised Hybrid Architecture (SHA), in which we use double layers of deliberative and reactive controls, distributed control with a modular design of Kinematic configurations, and real-time Linux OS. Deliberative and reactive actions interact through a corresponding arbitrator. These arbitrators help a robot to choose an appropriate architecture depending on the current situation to successfully perform a given task. The distributed control modules communicate through IEEE 1394 for the easy expandability. With a personal robot platform with a mobile base, two arms, a head and a pan-tilt stereo eye system, we tested the developed SHA for static as well as dynamic environments. For this application, we developed decision-making rules for selecting appropriate control methods for several situations of navigation task. Examples are shown to show the effectiveness.

  • PDF