• 제목/요약/키워드: Tilt System

검색결과 686건 처리시간 0.027초

Pan-Tilt 카메라를 이용한 실시간 얼굴 검출 및 추적 시스템 (The Real-Time Face Detection and Tracking System using Pan-Tilt Camera)

  • 임옥현;김진철;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.814-816
    • /
    • 2004
  • 본 논문에서는 웨이블릿을 이용한 알고리즘으로 얼굴을 검출하고 검출된 얼굴을 움직이는 Pan-Tilt 카메라상에서 추적하는 방법을 제안하고자 한다. 우리는 얼굴 검출을 위해 다섯 종류의 간단한 웨이블릿을 사용하여 특징을 추출하였고 AdaBoost(Adaptive Boosting) 알고리즘을 이용한 계층적 분류기를 통하여 추출된 특징들 중에서 얼굴을 검출하는데 강인한 특징들만을 모았다. 이렇게 만들어진 특징집합들을 이용하여 입력받은 영상에서 초당 20프레임의 실시간으로 얼굴을 검출하였고 영상에서 얼굴 위치와 Pan-Tilt 카메라 위치를 계산하여 실시간으로 움직임을 추적하는데 성공하였다.

  • PDF

틸트 로터형 무인항공기의 손상허용 설계 (Damage Tolerant Design for the Tilt Rotor UAV)

  • 박영철;임종빈;박정선
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

정지 비행 시 틸트 로터에서 발생하는 소음 예측 (Noise Prediction of Hovering Tilt Rotor)

  • 김규영;이성규;이덕주;홍석호;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

기립경사대 각도 증가에 따른 천골과 둔부 압력 변화 (Pressure on Sacrum and Buttock according to Tilt Table Inclination)

  • 육군창
    • The Journal of Korean Physical Therapy
    • /
    • 제25권2호
    • /
    • pp.71-75
    • /
    • 2013
  • Purpose: Although use of a tilt table is recommended in clinical practice, there are no published guidelines regarding pressure and inclination for tilt table use. The aim of the current study was to assess the changes of pressure on sacrum and buttock according to different inclination of the tilt table in healthy subjects. Methods: Thirty two healthy subjects participated in this study. Subjects were positioned supine on the tilt table and safety straps were secured across the chest, pelvic, and knee with sufficient tension to prevent the subjects from falling. Pressure and peak pressure of sacrum and buttock were measured using pressure mapping system with the tilt table standing at $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $85^{\circ}$ inclination. Results: A significant decrease in the pressure of sacrum and buttock was achieved by increasing tilt table inclination (p<0.05): $0^{\circ}{\sim}15^{\circ}$ (8.16%), $15^{\circ}{\sim}30^{\circ}$ (8.02%), $30^{\circ}{\sim}45^{\circ}$ (11.61%), $45^{\circ}{\sim}60^{\circ}$ (16.18%), $60^{\circ}{\sim}75^{\circ}$ (16%), and $75^{\circ}{\sim}85^{\circ}$ (11.48%). A significant decrease in the peak pressure was achieved by increasing tilt table inclination (p<0.05): $30^{\circ}{\sim}45^{\circ}$ (9.91%), $45^{\circ}{\sim}60^{\circ}$ (19.24%), $60^{\circ}{\sim}75^{\circ}$ (19.93%), and $75^{\circ}{\sim}85^{\circ}$ (11.48%). No significant peak pressure change was observed in $0^{\circ}{\sim}15^{\circ}$, $15^{\circ}{\sim}30^{\circ}$ tilt table inclination (p>0.05). Conclusion: The results of this study showed that the pressure of sacrum and buttock were decreased according to increasing tilt table inclination in healthy subjects. Guidelines are needed in order to optimize patient safety and overall outcome for tilt table standing.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • 공학교육연구
    • /
    • 제17권5호
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

3 차원 동적 자세균형 훈련기기의 능동/수동 체간 기울임에 따른 근 활성도 비교 (The Assessment on Electromyography of Trunk Muscle according to Passive and Active Trunk Tilt Exercise of 3-D Dynamic Postural Balance Training System)

  • 신선혜;유미;정구영;유창호;김경;정호춘;권대규
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.331-339
    • /
    • 2013
  • The Interest in disease prevention and rehabilitation is increasing depending on increase of patients with spinal. This is being developed using the spine stabilization device is being studied. So far studies have only evaluated the effect on trunk stabilization exercises but analysis of human movement patterns for active movement and passive movement did not. We assessed the muscle activity of trunk and leg muscle during passive and active tilt mode on eight tilt directions at tilt angle of $30^{\circ}$ using 3-D dynamic postural balance training system. We performed experimental study on the muscular activities of trunk muscle about rectus abdominis, external obliques, latissimus dorsi, erector spinae, and leg muscle about rectus femoris, Biceps femoris, Tibialis Anterior, gastrocnemius. As a result, muscle activation was different depending on the direction of movement and pattern. The results indicate that various patterns of spinal stabilization exercise system could be applied to an effective training of chronic low back pain patients.

영상처리기술을 이용한 건축 구조물의 실시간 변위측정 시스템의 개발 (Development of Real-Time Displacement Measurement System for Multiple Moving Objects of construction structures using Image Processing Techniques)

  • 김성욱;서진호;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.764-769
    • /
    • 2003
  • The paper introduces a development result for displacement measurement system of multiple moving objects based on image processing technique. The image processing method adopts inertia moment theory for obtaining the centroid of the targets and basic processing algorithms of gray, binary, closing, labeling and etc. To get precise displacement measurement in spite of multiple moving targets, a CCD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in directions of X -Y coordinates. The precise alignment device is pan /tilt of X - Y type and the pan/tilt is controlled by DC servomotors which are driven by 80c196kc microprocessor based controller. The centers of the fiducial marks are obtained by a inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are stored in the database system in a real time. By using database system and internet, displacement data can be confirmed at a great distance and analyzed. The developed system shows the effectiveness such that it realizes the precision about 0.12mm in the position control of X -Y coordinates.

  • PDF

영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발 (Development of Displacement Measurement System of Structures Using Image Processing Techniques)

  • 김성욱;김상봉;서진호
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법 (Applying tilt mechanism for high-resolution image acquisition)

  • 송천호
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권12호
    • /
    • pp.31-37
    • /
    • 2014
  • 본 연구논문에서는 고해상도 적외선 센서장비에서 조립오차에 의해 저하된 성능을 보완하기 위해 적외선 센서장비의 구성품인 렌즈조립체, 축거울 및 검출기의 민감도 분석을 통해 성능에 미치는 영향성을 확인하였고, 이를 보정하기 위해 검출기의 틸트 메커니즘 적용 방안에 대한 연구를 하였다. 검출기 틸트 메커니즘에는 장착면에 shim을 적용하여 tilt하는 방식인 Shim plate 방식과 tilt screw를 조정하여 검출면의 tilt를 조정하는 Tilting 나사 방식, 마지막으로 마이크로미터를 장착하여 정량적인 데이터를 획득할 수 있는 마이크로미터 헤드 방식으로 3가지 방식이 검토 되었다. 검토 결과 사용자의 조절이 용이하고 부피가 크지 않으며 실시간으로 영상을 보면서 조절이 가능한 Tilting 나사 방식을 적용하였으며, 실험결과 고해상도 영상을 획득할 수 있었으며 고해상도 영상획득을 구현하기 위한 장비에 적용이 필요한 기술임을 확인하였다.