• Title/Summary/Keyword: Tilt Rotor Aircraft

Search Result 45, Processing Time 0.023 seconds

Development of Simulation Program for Tilt Rotor Aircraft (틸트로터 항공기 비선형 시뮬레이션 프로그램 개발)

  • Yoo, Chang-Sun;Choi, Hyung-Sik;Park, Bum-Jin;Ahn, Sung-Jun;Kang, Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

Design of Lateral SCAS based on H for Tilt Rotor Aircraft (H 기반 틸트로터 항공기 횡방향 SCAS 설계)

  • Lee, Jangho;Yoo, Changsun;Walker, Daniel J.
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

Study of Longitudinal Stability of eVTOL UAM with Tilt Rotor and Tandem Wing (Tilt Rotor와 Tandem Wing을 적용한 eVTOL UAM의 세로안정성 연구)

  • Joo Chan-Young;Kim Ha-Min;Kim Min-Jae;Min Kyoung-Soon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.941-946
    • /
    • 2023
  • To improve the lift, cruise speed, and range of eVTOL aircraft, which are being considered as future transportation vehicles, this paper introduces the concepts of Tilt Rotor and Tandem Wing to the aircraft. We developed an aircraft and conducted flight experiments to obtain flight videos and flight logs. The results of the analysis of the flight videos and flight logs showed that the aircraft's moment was excessively forward and the attitude was not recovered. To address this problem, we modified the wing incidence angles and surface areas in XFLR5 to obtain the optimal pitching moment coefficients to ensure vertical stability. We then analyzed the redesigned aircraft, developed using CATIA, through XFLR5. The results of this study provide valuable insights, suggesting that the incorporation of Tilt Rotor and Tandem Wing designs can contribute to achieving stable pitching moment coefficients. This innovative approach offers a promising avenue to significantly enhance vertical stability in UAM vehicles, paving the way for future advancements in the field.

Tethered Hover Test for Small Scaled Tilt-rotor UAV (축소형 틸트로터 무인기의 안전줄 호버 시험)

  • Park, Bum-Jin;Yoo, Chang-Sun;Chang, Sung-Ho;Choi, Seong-Wook;Koo, Sam-Ok;Kang, Young-Shin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2007
  • Tilt rotor aircraft can take off and land vertically and cruise faster than any other helicopter. A scaled flight demonstration model of a tilt rotor aircraft has been developed by KARI. Because the flight characteristics of tilt rotor are not well known, the developed scaled model would be helpful to evaluate flight control algorithm of a full scale aircraft. The tethered hover test has been performed in order to improve hover flight characteristics of tilt rotor aircraft prior to flight test of the small scaled model. During the tethered hover test, the performance of rotor speed governor, rate SAS (Stability Augmentation System) and control surface mixers have been evaluated. We expect that the results of real flight hover test would be quite same as tethered hover test. Therefore the tethered hover test results will reduce the risk of flight test properly by fixing some of hidden problems which might occur during the flight test. This paper presents the results of tethered hover test in detail and shows how it could be final ground test before flight test. The control mixer gain and rate SAS feedback gains were modified in order to get higher controllability and stability during the tethered hover flight. The rotor governor showed that it could keep rotor RPM constant with very small deviation even during severe pilot collective input change. The tethered hover test results gave pilot and engineers confirmation and experience about the scheduled flight test.

  • PDF

FLOW ANALYSIS AROUND THE ROTOR BLADE WITH TILT ANGLES (틸팅각에 따른 로터 블레이드 주위의 유동장 해석)

  • Yoo, Y.H.;Choi, J.W.;Kim, S.C.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.166-170
    • /
    • 2008
  • The changing process from hovering mode to transition one is of importance to determine a stability of tilt-rotor aircraft, which is utilized in UAV(Unmaned Aerial Vehicle). The analysis on fluid flows and aerodynamic characteristics according to variation of tilting angle of rotor is essential step in development of tilt-rotor. In the present study, the computation domain is divided into the rotating and stationary regions in order to consider the rotating blades. For the convenient realization of various tilting angle as well as application of boundary condition, the whole computation region is constructed into sphere domain. The near farfield boundary condition is adopted. The airfoil used in computation is NACA 0012. The computation results for the hovering mode are validated by comparing with previously conducted experimental results. From the results, the flow fields around rotor blade and the aerodynamic characteristics in transition mode are observed. The computational result will provide the basis for development and performance evaluation of tilt-type aircraft.

  • PDF

Numerical Analysis of Aerodynamic Performance for Rotating Blades of Tilt Rotor Aircraft in Cruise Mode (순항중인 틸트로터의 회전하는 블레이드에 대한 공력성능 수치해석)

  • Ahn S. W.;Ko S. H.;Kim B. S.;Choi S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Numerical analysis were made for the unsteady flow fields of the rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Wavier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by seven multi-block Chimera grids. Comparison of pressure coefficient on the surface of the main wing and blades were made for 3cases of advance ratio(0.325, 0.350, 0.375) and thrust and power coefficients for the rotor were compared with experimental data.

  • PDF

Numerical Analysis of Aerodynamic Performance for Tilt Rotor Aircraft in Cruise Mode Using Chimaera Grid Method (겹침격자 기법을 이용한 틸트로터의 순항모드에 대한 공력성능 수치해석)

  • Ko S. H.;Ahn S. W.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.87-90
    • /
    • 2004
  • A numerical analysis was made for the unsteady flow fields of rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Navier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by six multi-block Chimera grids. Simulated unsteady flow fields of rotating blades were studied in several different view points.

  • PDF