• Title/Summary/Keyword: Tillage

Search Result 414, Processing Time 0.032 seconds

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

Effects of No-tillage Dry-seeding on Rice Growth and Soil Hardness

  • Choi, Jong-Seo;Kim, Sook-Jin;Park, Jeong Hwa;Kang, Shingu;Park, Ki-Do;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.662-668
    • /
    • 2016
  • No-tillage dry-seeding of rice can offer potential benefits by reducing time and labor cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil hardness in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. The seedling stand fell within optimum range for both no-till dry-seeding and wet-hill-seeding on puddled paddy. Plant height, number of tillers and SPAD values in no-tillage dry-seeding cultivation were higher than those observed in other methods. There were no significant differences in grain yield of rice among three cultivation methods. The quality characteristics of milled rice grown in no-tillage dry-seeding were similar to those grown in other cultivation methods. Soil hardness in top 10 cm depth was significantly higher in no-tillage dry-seeding than other cultivation methods, while soil hardness below 10 cm depth was highest in machine transplanting cultivation. Results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yield and grain quality.

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

Tillage Characteristics Estimation of Crank-type and Rotary-type Rotavators by Motion Analysis of Tillage Blades

  • Nam, Ju-Seok;Kim, Dae-Chun;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.279-286
    • /
    • 2012
  • Purpose: This study has been conducted to investigate the applicability of motion analysis of tillage blade for estimation of tillage characteristics of crank-type and rotary-type rotavators. Methods: The interrelation between tillage traces from motion analysis and field test results including rotavating depth, pulverizing ratio and inversion ratio at the same work conditions were analyzed for both crank-type and rotary-type rotavators. The work conditions include working speed of prime mover tractor and PTO speed of rotavators. For the motion analysis, joint conditions of main connecting component were specified considering the actual working mechanism of rotavator. Results: There were important correlations for the trend between motion analysis and field test results. Conclusions: Although further study is needed for applying motion analysis to estimate the accurate tillage related parameters such as rotavating depth, the soil pulverizing ratio and inversion ratio, it could be used to compare the tillage characteristics of various rotavators quickly and simply.

Comparative analysis of growth, yields and grain quality of rice among no-tillage dry-seeding, wet-hill-seeding and transplanting

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.208-208
    • /
    • 2017
  • No-tillage practices are expected to provide several benefits such as increasing soil organic matter, reducing labor time and saving energy cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil properties in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. Rice seedling establishment was slightly higher in no-tillage dry-seeding treatment ($145seedling\;m^{-2}$) than wet-hill-seeding on puddled paddy treatment ($111seedling\;m^{-2}$), but the seedling establishment in both treatments fell within the optimum range for direct seeding rice cultivation. Plant height, number of tillers and chlorophyll content (SPAD value) of rice in no-tillage dry-seeding treatment were higher than those of the other treatments. However, no significant differences in grain yield was observed among three cultivation methods, and the yield ranged 5.8 to $5.9ton\;ha^{-1}$. The heading date from seeding under no-tillage dry-seeding treatment was on average 109 days, which was similar to that under machine transplanting treatment (112 days), but 10 days later than that under wet-hill-seeding on puddled paddy treatment (99 days). Grain quality characteristics grown in no-tillage dry-seeding were similar to those grown in the other cultivation methods. These results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yields and grain quality.

  • PDF

Analysis of Variations in Mechanical Properties of Soil by Tillage Operations (경운작업에 의한 토양 역학적 특성의 변이 특성)

  • Park, J.G.;Lee, K.S.;Cho, S.C.;Noh, K.M.;Chung, S.O.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.

Row-Zone Tillage Systems and Implements

  • Morrison, John E.;Chandler, James M.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.413-422
    • /
    • 1996
  • " Row -Zone Tillage" systems apply tillage procedures only to narrow strips of land where the next crop rows will be planted. The tilled zones are no more than 25% of the field area. Row-zone tillage procedures of crop production are conservative, where in the soil remains partially covered with protective residues while crops are planted , fertilized , grown , and harvested in the row-zones. Specially adapted implements are being developed for these operations. There is potential for minimizing farm machinery inventories. Limited crop response data are available from Canada and the USA.d the USA.

  • PDF

Effects of No-Tillage and Split Irrigation on the growth of Pepper Organically Cultivated under Plastic Film Greenhouse Condition (무경운과 분할관수가 시설 유기재배 고추 생육에 미치는 영향)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.781-796
    • /
    • 2015
  • This study was carried out to investigate the effect of no-tillage and split irrigation on the growth of pepper plant under green house condition in Jeonnam province. Moisture content of soil at whole quantity irrigation in tillage was increased rapidly regardless of soil depth for initial irrigation and then was decreased continuously until next irrigation. Deviation of moisture content in soil was decreased with increasing depth of soil. Moisture contents of top soil and subsoil (20 cm) at whole quantity irrigation in no-tillage were increased with sunrise, and then decreased with sunset. Moisture contents of top soil in tillage, and top soil and subsoil (20 cm) in no-tillage at half quantity irrigation indicated a cyclic diurnal variation by evapotranspiration. Salinity of soil was increased after initial irrigation and then was decreased continuously until next irrigation. With increasing depth of soil, increases of salinity in soil was delayed. Salinity of top soil in no-tillage was increased between AM 11:00 and AM 12:00, and then showed the highest level between PM 2:00 and PM 6:00 on a cyclic diurnal variation by evapotranspiration. Salinity of subsoil (30 cm) in no-tillage was not measured a cyclic diurnal variation. Moisture content and salinity of soil was positive correlation regardless of tillage and no-tillage cultivation. Growth of pepper in no-tillage cultivation was higher than that in tillage cultivation. Main branch Length and stem diameter of half quantity irrigation plot was higher than that of whole quantity irrigation plot regardless of tillage and no-tillage cultivation. After harvesting, the number of pepper fruits of half quantity irrigation plot was increased remarkably by 49% and 47%, in tillage and no-tillage cultivation, respectively. Pepper yield of no-tillage cultivation plot was higher by 8% than that of tillage cultivation plot. Pepper yield of half quantity irrigation plot was increased remarkably by 36% and 39%, in tillage and no-tillage cultivation, respectively.

The Effect of Tillage Methods after Application of Liquid Pig Manure on Silage Barley Growth and Soil Environment in Paddy Field (돈분액비 시용 논에서 경운방법이 청보리 생육 및 토양환경에 미치는 영향)

  • Yang, Chang-Hyu;Lee, Sang-Bog;Kim, Taek-Kyum;Ryu, Jin-Hee;Yoo, Chul-Hyun;Lee , Jeong-Jun;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.285-292
    • /
    • 2008
  • To investigate the effect of tillage methods on the silage barely growth and the soil environment in paddy field, liquid pig manure(LPM) was applied after harvesting rice at Jisan series soil for 2 years. Five plots, a LPM applied rate as N%; 0, 100, 150, 200(basal dressing) and 100(basal dressing)+50(additional fertilizer) were divided by tillage methods; non-tillage, non-tillage+rice straw and rotary tillage method. Emission amounts of $NH_3$ gas highly decreased in the rotary tillage and the non-tillage+rice straw plot compared to non-tillage plot. The contents of soil organic matter and exchangeable cation were increased in the applied LPM plot. $NH_4-N$ and $NO_3-N$ contents in soil were the highest in the non-tillage+rice straw plot and followed by the rotary tillage and highly decreased along with the growth of plant. Run-off rate of mineral components were higher in order of the rotary tillage plot£æthe non-tillage plot£æthe non-tillage+rice straw plot and then leached to $SO_4$, $NO_3-N$, K plentifully. The yield of silage barley in dry weight was higher in order of the non-tillage+rice straw plot>the rotary tillage plot>the non-tillage plot. To estimate the feed value of silage barley, crude protein, acid detergent fiber(ADF) and neutral detergent fiber(NDF) contents were analyzed. Crude protein and ADF contents were the highest at rotary tillage N150% plot as 9.7 and 29.4%, respectively. NDF contents was the highest at non-tillage+rice straw N150% plot as 56.7%. In conclusion, we recommend not to incinerate rice straw and to apply LPM at non-tillage status in cultivating the silage barley. This may prevent water pollution and increase barley yields.