• Title/Summary/Keyword: Tie strength

Search Result 263, Processing Time 0.025 seconds

Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers (헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구)

  • Choi Jin Hyouk;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Bond-Slip Tests of V-ties as a Supplementary Lateral Reinforcement (보조 띠철근으로써 V-타이의 부착-미끄러짐 관계 실험)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.157-158
    • /
    • 2017
  • This tests examined bond stress-slip relationship of V-ties embedded into concrete as a supplementary lateral reinforcement proposed for ductility of concrete flexural members. The different leg shapes of V-ties were prepared as a test parameter. The V-tie with pressed end-legs exhibited 28% higher bond strength than the conventional V-ties, whereas bond stress-slip curves were insignificantly affected by the embedment length of V-ties.

  • PDF

The Effect of Consumers' Value Motives on the Perception of Blog Reviews Credibility: the Moderation Effect of Tie Strength (소비자의 가치 추구 동인이 블로그 리뷰의 신뢰성 지각에 미치는 영향: 유대강도에 따른 조절효과를 중심으로)

  • Chu, Wujin;Roh, Min Jung
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.159-189
    • /
    • 2012
  • What attracts consumers to bloggers' reviews? Consumers would be attracted both by the Bloggers' expertise (i.e., knowledge and experience) and by his/her unbiased manner of delivering information. Expertise and trustworthiness are both virtues of information sources, particularly when there is uncertainty in decision-making. Noting this point, we postulate that consumers' motives determine the relative weights they place on expertise and trustworthiness. In addition, our hypotheses assume that tie strength moderates consumers' expectation on bloggers' expertise and trustworthiness: with expectation on expertise enhanced for power-blog user-group (weak-ties), and an expectation on trustworthiness elevated for personal-blog user-group (strong-ties). Finally, we theorize that the effect of credibility on willingness to accept a review is moderated by tie strength; the predictive power of credibility is more prominent for the personal-blog user-groups than for the power-blog user groups. To support these assumptions, we conducted a field survey with blog users, collecting retrospective self-report data. The "gourmet shop" was chosen as a target product category, and obtained data analyzed by structural equations modeling. Findings from these data provide empirical support for our theoretical predictions. First, we found that the purposive motive aimed at satisfying instrumental information needs increases reliance on bloggers' expertise, but interpersonal connectivity value for alleviating loneliness elevates reliance on bloggers' trustworthiness. Second, expertise-based credibility is more prominent for power-blog user-groups than for personal-blog user-groups. While strong ties attract consumers with trustworthiness based on close emotional bonds, weak ties gain consumers' attention with new, non-redundant information (Levin & Cross, 2004). Thus, when the existing knowledge system, used in strong ties, does not work as smoothly for addressing an impending problem, the weak-tie source can be utilized as a handy reference. Thus, we can anticipate that power bloggers secure credibility by virtue of their expertise while personal bloggers trade off on their trustworthiness. Our analysis demonstrates that power bloggers appeal more strongly to consumers than do personal bloggers in the area of expertise-based credibility. Finally, the effect of review credibility on willingness to accept a review is higher for the personal-blog user-group than for the power-blog user-group. Actually, the inference that review credibility is a potent predictor of assessing willingness to accept a review is grounded on the analogy that attitude is an effective indicator of purchase intention. However, if memory about established attitudes is blocked, the predictive power of attitude on purchase intention is considerably diminished. Likewise, the effect of credibility on willingness to accept a review can be affected by certain moderators. Inspired by this analogy, we introduced tie strength as a possible moderator and demonstrated that tie strength moderated the effect of credibility on willingness to accept a review. Previously, Levin and Cross (2004) showed that credibility mediates strong-ties through receipt of knowledge, but this credibility mediation is not observed for weak-ties, where a direct path to it is activated. Thus, the predictive power of credibility on behavioral intention - that is, willingness to accept a review - is expected to be higher for strong-ties.

  • PDF

Shear strength prediction of high strength steel reinforced reactive powder concrete beams

  • Qi-Zhi Jin;Da-Bo He;Xia Cao;Feng Fu;Yi-Cong Chen;Meng Zhang;Yi-Cheng Ren
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.75-92
    • /
    • 2024
  • High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high-strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high-strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.

2D SUB-3D STM Approach for Design and Analysis of 3D Structural Concrete (3D 콘크리트 부재의 해석 및 설계를 위한 2D SUB-3D STM 방법)

  • 윤영묵;김승억;오진우;박정웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.415-420
    • /
    • 1998
  • In this paper, 2D SUB-3D STM approach for analysis and design of 3D structural concrete is presented. In the approach several 2D sub strut-tie models which are representations of compressive and tensile stress flows of each projected plane of 3D structural concrete are utilized in the sketch of a 3D strut-tie model, in the evaluation of effective strengths of compressive concrete struts, and in the verification of geometric compatibility and bearing capacity of critical nodal zones of 3D strut-tie model. To prove the validity and rationality of the suggested approach, the behavior and strength of a prestressed box girder diaphragm tested to failure are evaluated.

  • PDF

Strength Prediction of RC Beams Subjected to Pure Torsions Using 3-D Strut-Tie Models (3차원 스트럿-타이 모델을 이용한 순수 비틀림을 받는 보의 강도예측)

  • 박정웅;윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • ACI design code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the reinforced concrete beams. In this study, the failure strengths of the ten reinforced concrete beams subjected to pure torsion were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from the ACI design code. The comparison showed that the accuracy and performance of the present method were better than the ACI design code. Thus, the method implementing a 3-dimensional strut-tie model can be possibly applied to the analysis and design of the reinforced concrete beams subjected to pure torsion as a rational design method.

  • PDF

Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.853-868
    • /
    • 2013
  • The comparison of the effectiveness of artificial neural network (ANN) and linear regression (LR) in the prediction of strain in tie section using experimental data from eight high-strength-self-compact-concrete (HSSCC) deep beams are presented here. Prior to the aforementioned, a suitable ANN architecture was identified. The format of the network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of eleven and ten neurons in first and second TRAINLM training function was highly accurate and generated more precise tie strain diagrams compared to classical LR. The ANN's MSE values are 90 times smaller than the LR's. The correlation coefficient value from ANN is 0.9995 which is indicative of a high level of confidence.

Design in shear of reinforced concrete short columns

  • Moretti, M.L.;Tassios, T.P.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.265-283
    • /
    • 2013
  • This research was prompted by the paucity of specific code provisions regarding the design of short columns for shear. The purpose of this paper was to investigate whether the use of the normal shear design procedure of various codes may or may not be applied to reliably calculate the shear strength of short columns. Provisions of the codes American ACI 318M-08, Canadian CSA A23.3-04, Japanese AIJ Guidelines, New Zealand NZS 3101, European EN 1998 (EC8) parts 1 and 3, combined with EN 1992-1-1 (EC2), and draft fib Model Code 2010, as well as a strut-and-tie model are applied on short columns tested under cyclic loading that failed in shear. Actual shear resistances are compared to predictions, and the resulting shortcomings of the codes are identified. EN1998-3 appears to be the only code among those considered that may be reliably applied to estimate the shear resistance of short columns. Further, the proposed strut-and tie model can be a useful tool for the detailed design and assessment of short columns.

Effective numerical approach to assess low-cycle fatigue behavior of pipe elbows

  • Jang, Heung Woon;Hahm, Daegi;Jung, Jae-Wook;Hong, Jung-Wuk
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.758-766
    • /
    • 2018
  • We developed numerical models to efficiently simulate the low-cycle fatigue behavior of a pipe elbow. To verify the model, in-plane cyclic bending tests of pipe elbow specimens were conducted, and a through crack occurred in the vicinity of the crown. Numerical models based on the erosion method and tie-break method are developed, and the numerical results are compared with experimental results. The calculated results of both models are in good agreement with experimental results, and the model using the tie-break method possesses two times faster calculation speed. Therefore, the numerical model based on the tie-break method would be beneficial to evaluate the strength of piping systems under seismic loadings.

An Experimental investigation on the dependation characteristics of CN/CV cables : dependence on the materials and curing process (배전용 CN/CV 케이블의 절연재료 및 가교방식별 열화특성연구)

  • Kim, H.J.;Choi, Y.H.;Ahn, Y.K.;Kim, K.S.;Koo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.969-972
    • /
    • 1992
  • It is shown that the ac breakdown strength, treeing phenomena, oxidation level, and crystallinity of unaged and aged distribution CV cables vary with XLPE insulations (characterizing anti-oxidation) and curing process. The maximum size of bow-tie tree in insulation influenced on the decrease of ac breakdown strength and the increase of oxidation level and crystallinity of XLPE according to aging time lead to increase the size and density of bow-tie trees.

  • PDF