• Title/Summary/Keyword: Tide Correction

Search Result 37, Processing Time 0.022 seconds

Application of Practical Dispersion-Correction Scheme for Simulation of Tsunami Propagation (지진해일 전파 수치해석을 위한 실용적인 분산보정기법 적용)

  • Choi, Moon-Kyu;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.145-152
    • /
    • 2008
  • The initial wave lengths of tsunamis can be several tens to hundreds kilometers. Thus, the importance of the frequency dispersive effects in proportion to variation of the wave length, and should be properly considered in numerical simulation of tsunami propagation for a better accuracy. Recently, a practical dispersion-correction scheme has been developed by adding dispersion-correction terms(Cho et al., 2007). The new model employing the numerical technique has been verified by comparing numerical results with available analytic solutions, however, the new model has not yet been applied on a real topography. In this study, the new model is applied on a real topography and its applicability is examined. To study the applicability of the new model, two historical tsunami events are simulated for Sokcho, Mukho and Pohang harbors, with the tide gage records. Numerical results, the arrival time and the maximum water level at the tidal stations, are compared with observed data at each harbor.

A study of sea level measurement using GPS buoy (GPS 부의를 이용한 해수면 관측에 관한 연구)

  • Park, Un-Yong;Oh, Chang-Soo;Lee, Dong-Rak;Hong, Jung-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.85-88
    • /
    • 2007
  • Sea level fluctuation present a direct influence to those who live near the coast. The importance of monitoring sea level is evident. Therefore, various techniques have been employed for sea level measurements such as the coastal water level gauges, satellite altimetry and GPS buoy. Especially, GPS buoys have been used to measure water levels, atmospheric parameter and other physical conditions in sea, tide correction, the altimeter range calibration, ocean environment. In this paper, we will mainly concentrate on the kinematic technique for GPS buoy to measure the sea level. A test was carried out to test the method proposed in this paper, which made use of a GPS buoy equipped to monitor the sea level in Busan. We have executed to analysis about applications of GPS buoy.

  • PDF

A Study on Measurement of the Gravity in KOREA (우리나라 중력측정에 관한 연구)

  • 백은기;김감래
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1987
  • Using double-measurmented gravity values which observed by Lacoste instrument, drifts and MSE are analized after TIDE correction and Bouguer reduction is investigation. As the result of this study, it is possible to calculation a latitude, longitude, gravity and elevation at unknown point, and perphaps will be used as a fundamental data for application in the earth's crust structural analysis and geophysics.

  • PDF

Computation of the Typhoon Surges of July-August 1978 in the East China Sea (동지나해(東支那海)의 1978년(年) 하계(夏季) 태풍해일(颱風海溢)의 산정(算定))

  • Choi, Byung Ho
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • Two Typhoon surges generated during the period of July-August 1978 are investigated dynamically using a vertically-integrated finite-difference model of the Yellow Sea and the East China Sea, Computed residuals are compared oeth hourly records from selected tide gauges (Inchon, Kunsan, Mokpo, Jeju, Yeosu) slong the coast of Korea. Some of the preliminary results are presented and discussed. This initial hindcast study has been undertaken in association with SEASAT-A altimeter data correction work in the East China Sea.

  • PDF

Computation of the Sea Surface Topography over the East China Sea (동지나해의 해면변위산정)

  • 최병호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1986
  • An attempt to obtain equipotential surface over the East China Sea along the three SEASAT ground tracks are described. Total correction of sea surface heights above the reference ellipsoid provided by SEASAT GDR Altimeter data consists of ocean tides and surges, body tides, sea level pressure inverse barometer effect corrections for the present study. It was shown that three equipotential surface derived from the corrections were qualitatively in agreement with GEM l0B Model and SS3 Mean Sea Surface Model.

  • PDF

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

Shoreline Change Analysis of Haeundae Beach Using Airborne LiDAR Survey (항공 LiDAR 측량을 이용한 해운대 해안의 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;We, Gwang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.561-567
    • /
    • 2008
  • In this study, shoreline change was analyzed by RTK-GPS and advanced airborne LiDAR survey. For extraction of coastline, first of all, tide correction was conducted at all RTK-GPS points through the comparing with the corresponding tidal height, and cross section providing coastline was produced using Autocad Civil3D program. Comparing with two results of RTK-GPS (first, 29 Aug 2007; second, 6 Oct 2007) surveys, coastline of the first result had been decreased about 21m compare with that of the second. And it was also demonstrated that the length of coastline by the first RTK-GPS was 15m shorter than that by the airborne LiDAR survey (Dec. 2006). In addition, we recoquized that the erosion appeared in the top right-hand (dock area); the sediment in the bottom left-hand (Chosun beach area) of the Haeundae beach. As a result, therefore, it was learned that artificial sand filling for beach open and natural effects such as a typhoon, current drift, wind direction gave cause for area changes and coastline.

Validation of Satellite Altimeter-Observed Sea Surface Height Using Measurements from the Ieodo Ocean Research Station (이어도 해양과학기지 관측 자료를 활용한 인공위성 고도계 해수면고도 검증)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Seok Jae Gwon;Hyun-Ju Oh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.467-479
    • /
    • 2023
  • Satellite altimeters have continuously observed sea surface height (SSH) in the global ocean for the past 30 years, providing clear evidence of the rise in global mean sea level based on observational data. Accurate altimeter-observed SSH is essential to study the spatial and temporal variability of SSH in regional seas. In this study, we used measurements from the Ieodo Ocean Research Station (IORS) and validate SSHs observed by satellite altimeters (Envisat, Jason-1, Jason-2, SARAL, Jason-3, and Sentinel-3A/B). Bias and root mean square error of SSH for each satellite ranged from 1.58 to 4.69 cm and 6.33 to 9.67 cm, respectively. As the matchup distance between satellite ground tracks and the IORS increased, the error of satellite SSHs significantly amplified. In order to validate the correction of the tide and atmospheric effect of the satellite data, the tide was estimated using harmonic analysis, and inverse barometer effect was calculated using atmospheric pressure data at the IORS. To achieve accurate tidal corrections for satellite SSH data in the seas around the Korean Peninsula, it was confirmed that improving the accuracy of tide data used in satellites is necessary.

A Study on Hydrographic Survey based on Acoustic Echo-Sounder and GNSS (음향측심기와 GNSS 기반의 수로측량에 관한 연구)

  • PARK, Eung-Hyun;KIM, Dae-Hyun;JEON, Hae-Yeon;KANG, Ho-Yun;YOO, Kyung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.119-126
    • /
    • 2018
  • In this study, In this study, the Datum Level-based hydrography surveying system and the ellipsoid-based system were analyzed to acquire more consistent depth data. For the study, the ellipsoid-based surveying for hydrography was conducted twice for the same track line. And the depth was calculated by correcting rise and fall of water level (water level change by tidal energy and other marine environmental energies) respectively by the traditional water level correction method and ellipsoidally referenced water level correction method. there is able to check that Ellipsoid-based hydrographic surveying data is more improved than Datum Level-based hydrographic surveying data in aspect of level difference phenomenon in the same area (surveying line). This result shows that if the Ellipsoid-based hydrographic surveying is performed, the sea level change (tidal energy and other marine environmental energy) of the survey area in real time could be reflected to more consistent generating bathymetric data.

Computational Procedure for Sea Subface Topography of East Asian Marginal Seas using Geosat Altimeter Data (Geosat 고도계자료를 이용한 동아시아해역의 해면변위 산정법)

  • 최병호;고진석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.107-118
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with heigher precision to maginal seas, it was necessary to improve correction procedures for tidal signals in altimetry with more accurate tidal model than well-known model of Schwiderski for studying marginal sea dynamics. As a first step, tidal regime of semidiurnal tides$(M_2,\;S_2,\;N_2,\;K_2)$ and diurnal tides$(K_1,\;O_1,\;P_1,\;Q_1)$ were computed with a finer details of formulation of tidal model over the East Asian Marginal Seas covering the Okhotsk Sea and South China Sea and part of Northwest Pacific Ocean with mesh resolutions of 1/6$^{\circ}$. Subsequently the computed sets of harmonic constants from the model were used to remove the tide in selected Sea Surface Heights from Geosat in the modelled region. Preliminary correction procedure suggested in the present study may be extensively used for obtaining Sea Surface Topography over the East Asian Marginal Seas, especially for the region where Schwiderski's harmonic constants are not available.

  • PDF