• Title/Summary/Keyword: Tidal stream energy

Search Result 38, Processing Time 0.018 seconds

Recent Ocean Tidal Stream Power Generation Technology (국내외 해양 조류발전 기술)

  • Jo, Chul-H.;Park, K.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.134-137
    • /
    • 2006
  • Tidal power can use conventional technology to extract energy from the tides. It is usually best deployed in areas where there i s a high tical range which includes Western and Southern coastal areas in Korea. However, to extract tical energy, a barrage across an estuary or a bay is to be constructed that is now very hard due to severe environmental impact on local estuary. The recent technology of application of tidal stream provides a new window to extract power minimizing the adverse environmental impact Tidal stream technology which directly exploits these currents is relatively new but is presently generating considerable interest Turbine rotors can be used to extract energy from the flows. Prototype devices currently on test in the UK include the 300kW SeaFlow turbine. In this paper, the recent technology and research on ocean tical stream power are addressed

  • PDF

Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects

  • Mark Anthony Rotor;Hamid Hefazi;Nelson Enano, Jr.
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.247-268
    • /
    • 2023
  • Tidal stream energy extraction remains a site-specific resource due to the "first generation" criteria requiring high-velocity tidal streams. Most studies on tidal energy and turbine blade design heavily focus on installation sites with higher velocity conditions that are non-existent in tropical countries such as the Philippines. To shorten this gap, this review paper tackles tidal turbine design considerations for low-energetic regions such as the tropics. In-depth discussions of operating principles, methods of analysis, and designs of tidal turbine blades are presented. Notable tidal stream projects around the world are also mentioned in the paper. Also, it provides a perspective on the potential of this renewable energy to produce electricity for various sites in the Philippines. Finally, the paper emphasizes the need for new tidal turbine blade designs to be viable in tropical regions, such as the Philippines.

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.

A Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 연구)

  • Yang, Chang-Jo;Choi, M.S.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.309-309
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%.

  • PDF

NUMERICAL METHODS FOR OPEN WATER PERFORMANCE PREDICTION OF HORIZONTAL AXIS TIDAL STREAM ENERGY CONVERSION TURBINE (조류발전용 수평축터빈의 단독성능 평가를 위한 수치 해석법)

  • Lee, J.H.;Kim, D.J.;Rhee, S.H.;Kim, M.C.;Hyun, B.S.;Nam, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.155-162
    • /
    • 2010
  • Recently, due to high oil prices and environmental pollution issues, interest of alternative energy development increases and the related research is widely conducted. Among those research activities the tidal stream power generation utilizes the tidal flow as its mechanical power resource and less depends on the environmental condition for installation and operation than other renewable energy resources. Therefore the amount of power generated is quite consistent and straightforward to predict. However, research on the tidal stream energy conversion turbine is rarely found. In the present study, two numerical methods were developed and compared for the open water Momentum Theory, which is widely used for wind turbines, was adopted. The moving reference frame method for Computational Fluid Dynamis solver were also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

Theoretical Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 이론적 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%. If 20% of the undisturbed energy flux is extracted, the flow speed is reduced by 11.3%. The simple channel also suggests that extractable energy might be higher if flow speed reductions are considered acceptable.

Evaluation of Tidal Stream Resources Near Uido Using an ADCIRC Model (ADCIRC 모델을 이용한 우이도 주변해역의 조류자원 평가)

  • Jeong, Haechang;Nguyen, Manh Hung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • This study evaluated tidal stream energy resources according to tidal flow properties around Uido off the west coast of, Jeollanam-do, South Korea. A feasibility study was first carried out through the collection of bathymetry data and tidal phase information. For this simulation, a depth-averaged 2D ADCIRC (Advanced Circulation) model for real sea situations was applied to a Finite Element Method (FEM) approach for tides given the variation of tidal current speed. Hydrodynamics were simulated with 4 major tidal constituents (M2, S2, K1, and O1) after setting up 4 observation points. From the real depth-averaged model simulation results, it was found that the spring tide Higher High Water (HHW) and tidal current speed values at the 4 observation points were about 2.2 m and 1.33 m/s, respectively. The ADCIRC model results were analyzed with reference to the Korea Hydrographic and Oceanographic Agency's (KHOA) observed data for verification. Furthermore, using topographical characteristics via the Tidal Flux Method (TFM), tidal energy density distribution was calculated, indicating a maximum tidal energy density of about $1.75kW/m^2$ for the 5 assessment areas around Uido. The tidal energy density was evaluated with consideration given to topographical characteristics as well as tidal elevation and tidal current speed to determine an optimum tidal farm candidate.

A Study on Energy Extraction from Tidal Currents

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.79-79
    • /
    • 2011
  • The oceans are an untapped resource, capable of making a major contribution to our future energy needs. In the search for a non polluting renewable energy source, there is a push to find an economical way to harness energy from the ocean. Tidal stream is one of ocean energy form that is being investigated as potential source for power generation. Tidal current turbines are therefore designed as conversion machinery to generate power from tidal currents. A study on energy extraction from tidal currents is presented in this paper.

  • PDF

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine (10kW급 상반전 조류터빈의 설계와 성능에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.