DOI QR코드

DOI QR Code

Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects

  • Mark Anthony Rotor (Department of Mechanical Engineering, State University of New York (SUNY)) ;
  • Hamid Hefazi (Department of Mechanical Engineering, State University of New York (SUNY)) ;
  • Nelson Enano, Jr. (Center for Renewable Energy and Appropriate Technologies (CREATe), Ateneo de Davao University)
  • Received : 2023.03.19
  • Accepted : 2023.08.22
  • Published : 2023.09.25

Abstract

Tidal stream energy extraction remains a site-specific resource due to the "first generation" criteria requiring high-velocity tidal streams. Most studies on tidal energy and turbine blade design heavily focus on installation sites with higher velocity conditions that are non-existent in tropical countries such as the Philippines. To shorten this gap, this review paper tackles tidal turbine design considerations for low-energetic regions such as the tropics. In-depth discussions of operating principles, methods of analysis, and designs of tidal turbine blades are presented. Notable tidal stream projects around the world are also mentioned in the paper. Also, it provides a perspective on the potential of this renewable energy to produce electricity for various sites in the Philippines. Finally, the paper emphasizes the need for new tidal turbine blade designs to be viable in tropical regions, such as the Philippines.

Keywords

Acknowledgement

This research is funded by DOST-Newton Agham Institutional Link Grant Program with a PCIEERD Project Number 9607. The authors would like to thank Ms. Christie Claire Boiser and Mr. Justine Clyde Espinosa for the assistance in the formatting and visualization used in this review paper.

References

  1. Abundo, M.L., Ang, M.R. and Buhali, M. (2012), "Tidal in-stream energy potential metric: Calibration and estimation in selected sites in the Philippines", IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, 4-7. https://doi.org/10.1109/TENCON.2012.6412335.
  2. Abundo, M.L., Nerves, A.C., Ang, M.R., Paringit, E.C., Bernardo, L.P., Villanoy, C. L. and Villanoy, C.L. (2011), "Energy potential metric for rapid macro-level resource assessment of tidal in-stream energy in the Philippines", Proceedings o f the 2011 10th Int. Conf. Environ. Electr. Eng. EEEIC.EU 2011 - Conf. Proc., 1-5. https://doi.org/10.1109/EEEIC.2011.5874712.
  3. Adcock, T.A., Draper, S., Willden, R.H. and Vogel, C.R. (2021), "The fluid mechanics of tidal stream energy conversion", Annu. Rev. Fluid Mech., 53, 287-310. https://doi.org/10.1146/annurev-fluid-010719-060207.
  4. Ahmed, U., Apsley, D.D., Afgan, I., Stallard, T. and Stansby, P.K. (2017), "Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data", Renew. Energ., 112, 235-246. https://doi.org/10.1016/j.renene.2017.05.048.
  5. Amiri, H.A., Shafaghat, R., Alamian, R., Taheri, S.M. and Safdari Shadloo, M. (2019), "Study of horizontal axis tidal turbine performance and investigation on the optimum fixed pitch angle using CFD: A case study of Iran", Int. J. Numer. Method. Heat Fluid Fl., 30, 206-227. https://doi.org/10.1108/HFF-05-2019-0447.
  6. Atcheson, M., MacKinnon, P. and Elsaesser, B. (2015), "A large scale model experimental study of a tidal turbine in uniform steady flow", Ocean Eng., 110, 51-61. https://doi.org/10.1016/j.oceaneng.2015.09.052.
  7. Attukur Nandagopal, R. and Narasimalu, S. (2020), "Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia", Renew. Energ., 146, 166-180. https://doi.org/10.1016/j.renene.2019.05.111.
  8. Baltazar, J. and Falcao de Campos, J.A. (2011), "Hydrodynamic analysis of a horizontal axis marine current turbine with a boundary element method", J. Offshore Mech. Arct. Eng., 133, 1-10. https://doi.org/10.1115/1.4003387.
  9. Baltazar, J., Falc, J.A. and Campos, D. (2009), "Unsteady analysis of a horizontal axis marine current turbine in yawed inflow conditions with a panel method", Proceedings of the 1st Int. Symp. Mar. Propulsors smp'09, Trondheim, Norway, June 2009.
  10. Baratchi, F., Jeans, T.L. and Gerber, A.G. (2019), "A modified implementation of actuator line method for simulating ducted tidal turbines", Ocean Eng., 193, 106586. https://doi.org/10.1016/j.oceaneng.2019.106586.
  11. Barltrop, N., Varyani, K.S., Grant, A., Clelland, D. and Pham, X.P. (2007), "Investigation into wave- current interactions in marine current turbines", Proc. Inst. Mech. Eng. Part A J. Power Energy, 221, 233-242. https://doi.org/10.1243/09576509JPE315.
  12. Batten, W.M., Bahaj, A.S., Molland, A.F. and Chaplin, J.R. (2007), "Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines", Ocean Eng., 34, 1013-1020. https://doi.org/10.1016/j.oceaneng.2006.04.008.
  13. Batten, W.M., Bahaj, A.S., Molland, A.F. and Chaplin, J.R. (2008), "The prediction of the hydrodynamic performance of marine current turbines", Renew. Energ., 33, 1085-1096. https://doi.org/10.1016/j.renene.2007.05.043.
  14. Bir, G.S., Lawson, M.J. and Li, Y. (2011), "Structural design of a horizontal-axis tidal current turbine composite blade", Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, 5, 797-808. https://doi.org/10.1115/OMAE2011-50063.
  15. Breeze, P. (2019), Power generation technologies. Newnes.
  16. Bunye, P. (2020), Developments in Government Policy/Strategy/Approach. In Energy 2021. Global Legal Group. Retrieved from https://www.globallegalinsights.com/practice-areas/energy-laws-andregulations/Philippines.
  17. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2011). Wind Energy Handbook (2nd Ed.), John Wiley & Sons, Ltd. https://doi.org/10.1002/0470846062.ch9.
  18. Chauhan, P., Patel, P. and Sheth, S. (2015), "Tidal stream turbine- introduction, current and future tidal power stations", Natl. Conf. Innov. Emerg. Technol., (NCIET-2015) At SRPEC, Unjha, 1, 285-287. https://doi.org/10.13140/RG.2.1.1823.2489.
  19. Cranenburgh, N. (2018), Underwater 'kites' are tapping into the ocean's tidal energy potential. Underwater 'kites' are tapping into the ocean's tidal energy potential. Retrieved May 8, 2021, from https://createdigital.org.au/underwater-kites-tidal-energy-potential/
  20. Cruz, C. (2017). $25-M tidal power plant in Samar eyed. $25-M tidal power plant in Samar eyed. Retrieved from https://business.inquirer.net/231414/25-m-tidal-power-plant-samar-eyed.
  21. de Jesus Henriques, T.A., Tedds, S.C., Botsari, A., Najafian, G., Hedges, T.S., Sutcliffe, C.J. and Poole, R.J. (2014), "The effects of wave-current interaction on the performance of a model horizontal axis tidal turbine", Int. J. Mar. Energ., 8, 17-35. https://doi.org/10.1016/j.ijome.2014.10.002.
  22. Department of Energy Philippines (2019), Summary of Renewable Energy (RE) Projects as of 31 December 2019. Tech. rep., Department of Energy Philippines. Retrieved from https://www.doe.gov.ph/renewableenergy/summary-renewable-energy-re-projects-31-december-2019.
  23. Douglas, C.A., Harrison, G.P. and Chick, J.P. (2008), "Life cycle assessment of the Seagen marine current turbine", Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., 222, 1-12. https://doi.org/10.1243/14750902JEME94.
  24. Draycott, S., Payne, G., Steynor, J., Nambiar, A., Sellar, B. and Venugopal, V. (2019), "An experimental investigation into non-linear wave loading on horizontal axis tidal turbines", J. Fluid. Struct., 84. https://doi.org/10.1016/j.jfluidstructs.2018.11.004.
  25. Encarnacion, J.I., Johnstone, C. and Ordonez-Sanchez, S. (2019), "Design of a horizontal axis tidal turbine for less energetic current velocity profiles", J. Mar. Sci. Eng., 7. https://doi.org/10.3390/jmse7070197.
  26. European Marine Energy Centre (2021), Tidal developers. Tidal developers. Retrieved May 8, 2021, from https://www.emec.org.uk/marine-energy/tidal-developers.
  27. Farthing, S. (2021), River or Tidal Current Counter-Oscillating Pump for Tidal or Hydro Power. River or Tidal Current Counter-Oscillating Pump for Tidal or Hydro Power. Retrieved March 23, 2021, from https://econologica.org/watermill.htm.
  28. Fletcher, G. (2021), Tidal Current Energy Project at Race Rocks 2006-2011 | Race Rocks Ecological Reserve-. Tidal Current Energy Project at Race Rocks 2006-2011 | Race Rocks Ecological Reserve-. Retrieved May 8, 2021, from https://racerocks.ca/tidal-current-energy-project-at-race-rocks-2006-2011.
  29. Fraenkel, P.L. (2006), Tidal current energy technologies. Ibis (Lond. 1859), 148, 145-151. https://doi.org/10.1111/j.1474-919X.2006.00518.x.
  30. Galloway, P.W., Myers, L.E. and Bahaj, A.S. (2010), "Studies of a scale tidal turbine in close proximity to waves", Proceedings of the 3rd Int. Conf. Ocean Energy.
  31. Galloway, P.W., Myers, L.E. and Bahaj, A.S. (2014), "Quantifying wave and yaw effects on a scale tidal stream turbine", Renew. Energ., 63, 297-307. https://doi.org/10.1016/j.renene.2013.09.030.
  32. Garrett, C. and Cummins, P. (2007), "The efficiency of a turbine in a tidal channel", J. Fluid Mech., 588, 243-251. https://doi.org/10.1017/S0022112007007781.
  33. Ghazvinei, P.T., Darvishi, H.H. and Bhatia, A. (2018), "Sustainable power generation by tidal current turbine in straits of Malacca", Proceedings of the 2018 Asia Conf. Mech. Eng. Aerosp. Eng. (MEAE 2018). https://doi.org/10.1051/matecconf/201819804004.
  34. Global Environment Facility and United Nations Development and Department of Energy (2018), Guidebook on Renewable Energy Project Development and Packaging. Tech. rep., United Nations Development Programme.
  35. Gonzalez-Gorbena, E., Rosman, P.C. and Qassim, R.Y. (2015), "Assessment of the tidal current energy resource in Sao Marcos Bay", Brazil. J. Ocean Eng. Mar. Energy, 1, 421-433. https://doi.org/10.1007/s40722- 015-0031-5.
  36. Guo, Q., Zhou, L. and Wang, Z. (2015), "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine", Renew. Energ., 75, 640-648. https://doi.org/10.1016/j.renene.2014.10.047.
  37. Harries, T., Kwan, A. and Falconer, R. (2014), Physical testing and numerical modelling of a novel verticalaxis tidal stream turbine, Ph.D. dissertation, Cardiff University.
  38. Hervouet, J.M. (2007), Hydrodynamics of free surface flows, John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470319628.
  39. Hodges, B.R. (2014), "Hydrodynamical modeling", Ref. Modul. Earth Syst. Environ. Sci., https://doi.org/10.1016/B978-0-12-409548-9.09123-5.
  40. Im, H., Hwang, T. and Kim, B. (2020), "Duct and blade design for small-scale floating tidal current turbine development and CFD-based analysis of power performance", J. Mech. Sci. Technol., 34, 1591-1602. https://doi.org/10.1007/s12206-020-0321-2.
  41. International Hydropower Association. (2021), Technology case study: Sihwa Lake tidal power station. Technology case study: Sihwa Lake tidal power station. Retrieved March 23, 2021, from https://www.hydropower.org/blog/technology-case-study-sihwa-lake-tidal-power-station.
  42. International Renewable Energy Agency (IRENA) (2020), Innovation outlook: Ocean energy technologies, A contribution to the Small Island Developing States Lighthouses Initiative 2.0. Tech. rep., International Renewable Energy Agency (IRENA). Retrieved from www.irena.org/Publications.
  43. Jin, K.R., Ji, Z.G. and James, R.T. (2007), "Three-dimensional water quality and SAV modeling of a large shallow lake", J. Great Lakes Res., 33, 28-45. https://doi.org/10.3394/0380-1330(2007)33[28:twqasm]2.0.co;2.
  44. Jose Suarez-Lopez, M., Espina-Valdes, R., Manuel, V., Pacheco, F., Navarro Manso, A., Blanco-Marigorta, E. and Alvarez-Alvarez, E. (2019), "A review of software tools to study the energetic potential of tidal currents", Energies, https://doi.org/10.3390/en12091673.
  45. Kalogirou, S.A. (2014), Solar energy engineering: Processes and systems (2nd Ed.), https://doi.org/10.1016/b978-0-12-397270-5.00001-7.
  46. Ke, S., Wen-Quan, W. and Yan, Y. (2020), "The hydrodynamic performance of a tidal-stream turbine in shear flow", Ocean Eng., 199, 107035. https://doi.org/10.1016/j.oceaneng.2020.107035.
  47. Khare, V. and Nema, S. (2018), "Tidal energy systems: Design, optimization and control", Tidal Energy Syst. Des. Optim. Control, 1-416. https://doi.org/10.1016/C2017-0-02279-6.
  48. Kumar, P.M., Seo, J., Seok, W., Rhee, S.H. and Samad, A. (2019), "Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine", Renew. Energ., 135, 277-287. https://doi.org/10.1016/j.renene.2018.12.023.
  49. Lam, W.H. and Chen, L. (2014), "Equations used to predict the velocity distribution within a wake from a horizontal-axis tidal-current turbine", Ocean Eng., https://doi.org/10.1016/j.oceaneng.2014.01.005.
  50. Laws, N.D. and Epps, B.P. (2016), Hydrokinetic energy conversion: Technology, research, and outlook. Hydrokinetic energy conversion: Technology, research, and outlook, 57, 1245-1259. https://doi.org/10.1016/j.rser.2015.12.189.
  51. Li, Y. and Calisal, S.M. (2017), "On flow fluctuation's impact on the performance of vertical axis turbines - A potential flow analysis", J. Renew. Sust. Energ., 9, 054501. https://doi.org/10.1063/1.5007237.
  52. Liggett, J.A. (1994), Governing equations for free surface flows, In Comput. Model. Free. Press. Flows, 3-32. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-0964-2_1.
  53. Liu, Z. (2015), R&D on Global Energy Interconnection and Practice, Glob. Energy Interconnect., 273-342. https://doi.org/10.1016/B978-0-12-804405-6.00007-5.
  54. Looi, L.J., Aris, A.Z., Wan Johari, W.L., Md. Yusoff, F. and Hashim, Z. (2013), "Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca", Mar. Pollut. Bull., 74, 471-476. https://doi.org/10.1016/j.marpolbul.2013.06.008.
  55. Luznik, L., Flack, K.A., Lust, E.E. and Baxter, D.P. (2012), "Hydrodynamic performance of a horizontal axis tidal turbine under steady flow conditions", Ocean, 2012 MTS/IEEE Harnessing Power Ocean. https://doi.org/10.1109/OCEANS.2012.6404873.
  56. MacMillan, A. and Turrentine, J. (2021), Global Warming 101. Global Warming 101. NRDC, Retrieved from https://www.nrdc.org/stories/global-warming-101
  57. Malki, R., Williams, A.J., Croft, T.N., Togneri, M. and Masters, I. (2013), "A coupled blade element momentum - Computational fluid dynamics model for evaluating tidal stream turbine performance", Appl. Math. Model., 37, 3006-3020. https://doi.org/10.1016/j.apm.2012.07.025.
  58. Multon, B. (2011). Marine Renewable Energy Handbook. John Wiley & Sons, Inc.
  59. Nachtane, M., Tarfaoui, M., Goda, I. and Rouway, M. (2020), "A review on the technologies, design considerations and numerical models of tidal current turbines", 157, 1274-1288. https://doi.org/10.1016/j.renene.2020.04.155.
  60. Nandagopal, R.A. and Narasimalu, S. (2020), "Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia", Renew. Energ., 146, 166-180. https://doi.org/10.1016/j.renene.2019.05.111.
  61. National Oceanic and Atmospheric Administration (2017), What is a current? What is a current?, 20. Retrieved June 18, 2021, from https://oceanservice.noaa.gov/facts/current.html.
  62. National Oceanic and Atmospheric Administration (2020), About harmonic constituents. about harmonic constituents. Retrieved July 22, 2020, from https://tidesandcurrents.noaa.gov/about\_harmonic\_constituents.html
  63. Neill, S.P. and Hashemi, M.R. (2018), Fundamentals of ocean renewable energy: Generating electricity from the sea, https://doi.org/10.1016/C2016-0-00230-9.
  64. Nuernberg, M. and Tao, L. (2018), "Turbulence and wake effects in tidal stream turbine arrays", Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE. 10. American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/OMAE2018-77507.
  65. Ordonez-Sanchez, S., Allmark, M., Porter, K., Ellis, R., Lloyd, C., Santic, I. and Johnstone, C. (2019), "Analysis of a horizontal-axis tidal turbine performance in the presence of regular and irregular waves using two control strategies", Energies, 12. https://doi.org/10.3390/en12030367.
  66. Rahman, A.A. (2017), Numerical modelling of full scale tidal turbines using the actuator disc approach, Ph.D. dissertation, The University of Edinburgh.
  67. Roberts, A., Thomas, B., Sewell, P., Khan, Z. Balmain, S. and Gillman, J. (2016), "Current tidal power technologies and their suitability for applications in coastal and marine areas", J. Ocean Eng. Mar. Energy, 2, 227-245. https://doi.org/10.1007/s40722-016-0044-8.
  68. Robins, P.E., Lewis, M.J., Neill, S.P., Hashemi, M.R. and Stephenson, G. (2015), Lower Velocity Sites Improve the Tidal-Stream Energy Resource. Am. Geophys. Union, Fall Meet. 2015, Retrieved from https://ui.adsabs.harvard.edu/abs/2015AGUFMGC52C.05R/abstract.
  69. Ross, H. and Polagye, B. (2020), "An experimental assessment of analytical blockage corrections for turbines", Renew. Energ., 152, 1328-1341. https://doi.org/10.1016/j.renene.2020.01.135.
  70. Sangiuliano, S.J. (2017), Community energy and emissions planning for tidal current turbines: A case study of the municipalities of the Southern Gulf Islands Region, British Columbia. Community energy and emissions planning for tidal current turbines: A case study of the municipalities of the Southern Gulf Islands Region, British Columbia, 76, 1-8. https://doi.org/10.1016/j.rser.2017.03.036.
  71. Sauser, B. (2020), Tidal power comes to market | MIT technology review. tidal power comes to market | MIT technology review. Retrieved July 3, 2020, from https://www.technologyreview.com/2008/07/29/269235/tidal-power-comes-to-market.
  72. Schluntz, J. and Willden, R.H. (2015), "The effect of blockage on tidal turbine rotor design and performance", Renew. Energ., 81, 432-441. https://doi.org/10.1016/j.renene.2015.02.050.
  73. Shirasawa, K., Tokunaga, K., Iwashita, H. and Shintake, T. (2016), "Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents", Renew. Energ., 91, 189-195. https://doi.org/10.1016/j.renene.2016.01.035.
  74. Steiner-Dicks, K. (2011), Grid connections for tidal power a "tricky issue", Tidal Today.
  75. Strain, A. (2008), Sea change for energy generation, Sea change for energy generation, Retrieved from https://news.bbc.co.uk/2/hi/uk\_news/northern\_ireland/7233829.stm.
  76. Tatum, S.C., Frost, C.H., Allmark, M., O'Doherty, D.M., Mason-Jones, A., Prickett, P.W. and O'Doherty, T. (2016), "Wave-current interaction effects on tidal stream turbine performance and loading characteristics", Int. J. Mar. Energ., 14, 161-179. https://doi.org/10.1016/j.ijome.2015.09.002.
  77. Tatum, S.C., Frost, C.H., Allmark, M., O'Doherty, D.M., Mason-Jones, A., Prickett, P. W. and O'Doherty, T. (2016), "Wave-current interaction effects on tidal stream turbine performance and loading characteristics", Int. J. Mar. Energy, 14, 161-179. https://doi.org/10.1016/j.ijome.2015.09.002.
  78. Thake, J. (2005), Development, installation and testing of a large-scale tidal current turbine, Tech. rep., Office of Scientific and Technical Information.
  79. Thandayutham, K. and Samad, A. (2019), "Hydrostructural optimization of a marine current turbine through multi-fidelity numerical models", Arabian J. Sci. Eng., 45, 935-952. https://doi.org/10.1007/s13369-019-04185-y.
  80. The World Business for Sustainable Development (2008), Harnessing Energy from the Oceans. Harnessing Energy from the Oceans. Retrieved from https://www.enn.com/articles/37116-harnessing-energy-from-the-oceans.
  81. The World Business for Sustainable Development (2008), Harnessing energy from the oceans, Harnessing energy from the oceans, Retrieved from https://www.enn.com/articles/37116-harnessing-energy-from-the-oceans.
  82. Tian, W., Mao, Z. and Ding, H. (2018), "Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine", Int. J. Nav. Archit. Ocean Eng., 10, 782-793. https://doi.org/10.1016/j.ijnaoe.2017.10.006.
  83. Tide Analysis (2023), Virginia Institute of Marine Science, Gloucester Point, VA, USA. www.vims.edu.
  84. U.S. Environmental Protection Agency (2021), Global greenhouse gas emissions data. global greenhouse gas emissions data, Retrieved March 23, 2021, from https://www.epa.gov/ghgemissions/global- greenhousegas-emissions-data.
  85. University of Strathclyde Engineering (2014), Methodology for a decision support tool for a tidal stream device. Methodology for a decision support tool for a tidal stream device, Retrieved from Electricity from the Sea. https://doi.org/10.1016/C2016-0-00230-9.
  86. Vikas, M., Rao, S., Seelam, J.K., Subba, R. and Seelam, J.K. (2016), "Tidal energy: A review", Int. Conf. Hydraul. Water Resour. Coast. Eng., 2320-2329.
  87. Vogel, C.R., Willden, R.H. and Houlsby, G.T. (2018), "Blade element momentum theory for a tidal turbine", Ocean Eng., 169, 215-226. https://doi.org/10.1016/j.oceaneng.2018.09.018.
  88. Winter, A.I. (2011), Differences in fundamental design drivers for wind and tidal turbines. Ocean. 2011 IEEE - Spain, 1-10. Santander. https://doi.org/10.1109/Oceans-Spain.2011.6003647.
  89. Wolf, J. and Prandle, D. (1999), "Some observations of wave-current interaction", Coast. Eng., 37, 471-485. https://doi.org/10.1016/S0378-3839(99)00039-3.
  90. Yahagi, K. and Takagi, K. (2019), "Moment loads acting on a blade of an ocean current turbine in shear flow", Ocean Eng., 172, 446-455. https://doi.org/10.1016/j.oceaneng.2018.12.026.
  91. Zobaa, A.F. and Bansal, R.C. (2011), Handbook of renewable energy technology. World Scientific. https://doi.org/10.1142/7489.