• Title/Summary/Keyword: Tidal elevation

Search Result 147, Processing Time 0.023 seconds

The Influence of Water Temperature on Filtration Rates and Ingestion Rates of the Blue Mussel, Mytilus galloprovincialis (Bivalvia) (수온에 따른 지중해담치 (Mytilus galloprovincialis; Bivalvia) 의 여과율과 섭식율 변동)

  • Lee, Seo E;Shin, Hyun Chool
    • The Korean Journal of Malacology
    • /
    • v.31 no.3
    • /
    • pp.203-212
    • /
    • 2015
  • This study was performed to describe the influence of temperature on the clearance rate and ingestion rate of the blue mussel, Mytilus galloprovincialis with three food organisms and habitat location (shell size) of mussel. Food organisms used in this experiments were Isochrysis galbana, Chaetoceros didymus and Prorocentrum dentatum. The size of mussels inhabiting higher midlittoral zone was smaller than those of lower midlittoral zone. Regardless of the kind of food organisms, filtration rates and ingestion rates of higher midlittoral mussels were higher than those of lower midlittoral mussels in experiment temperature conditions. The variation of filtration rate and ingestion rate showed same tendency with temperature. Filtration rates and ingestion rates increased with temperature, and recorded maximum values at $20-25^{\circ}C$ of temperature, and thereafter decreased gradually. Theoretical optimum temperatures showing maximum filtration rates and ingestion rates estimated from polynomial regression curves were also in the range of $20-25^{\circ}C$. Blue mussels showed different variation of filtration rate and ingestion rate with the kind of food organisms. Filtration rates and ingestion rate based on cell number were similar regardless of habitat location(tidal elevation) and food organisms. Ingestion rates based on carbon content showed very high values in case of P. dentatum beside I. galbana and C. didymus as food organism.

A Study of Transient Estuarine Circulation in the Chunsu Bay, Yellow Sea: Impact of Freshwater Discharge by Artificial Dikes

  • Jeong, Kwang-Young;Ro, Young Jae;Kang, Tae Soon;Choi, Yang Ho;Kim, Changsin;Kim, Baek Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.242-253
    • /
    • 2020
  • This study examined the ef ects of freshwater discharge by artificial dikes from the Kanwol and Bunam lakes on the dynamics in the Chunsu Bay, Yellow Sea, Korea, during the summer season based on three-dimensional numerical modeling experiments. Model performances were evaluated in terms of skill scores for tidal elevation, velocity, temperature, and salinity and these scores mostly exceeded 90 %. The variability in residual currents before and after the freshwater discharge was examined. The large amount of lake water discharge through artificial dikes may result in a dramatically changed density field in the Chunsu Bay, leading to an estuarine circulation system. The density-driven current formed as a result of the freshwater inflow through the artificial dikes (Kanwol/Bunam) caused a partial change in the tidal circulation and a change in the scale and location of paired residual eddies. The stratification formed by strengthened static stability following the freshwater discharge led to a dramatic increase in the Richardson number and lasted for a few weeks. The strong stratification suppressed the vertical flux and inhibited surface aerated water mixing with bottom water. This phenomenon would have direct and indirect impacts on the marine environment such as hypoxia/anoxia formation at the bottom.

A Prediction on the Wetlands Change of Suncheon Bay by the Sea Level Rise (해수면 상승에 따른 순천만 습지 변화 예측)

  • MOON, Bora;KIM, Dong-Myung;LEE, Suk-Mo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.627-635
    • /
    • 2017
  • Sea level rise caused by climate change has become a global issue. Sea level rise seems to be an important factor of the research for coastal areas as it affects topography and vegetation of coasts and especially for the plan of coastal wetlands restoration which needs to be carried out for a long term, it has to be considered sufficiently. The coastal wetlands in Korea was damaged by the land reclamation project but recent concerns on the restoration have increased as its value is evaluated highly. Suncheon Bay had also reclaimed from wetlands to rice field once however this site is very active for restoration nowadays. This study estimated an effect according to sea level rise by 2100, reappearing the none dike condition of Suncheon Bay so that it can be taken account of a future plan of wetland restoration. The Sea Level Affecting Marshes Model(SLAMM) was selected as predicting model. The input data such as DEM(Digital Elevation Model), slope, wetlands category, sea level rise senario, tidal range and accretion rate was applied for the simulation. The results showed a decrease in tidal flat, an increase in sea area and a change of the rice field to transitional salt marsh consistently by 2100. These results of this study could be used as baseline data in the future plan of ecological restoration in Suncheon Bay.

Numerical Experiments Using Modified POM WAD with Computing Time Saving Technique (계산시간절약기법이 적용된 수정 POM WAD의 수치실험)

  • Park, Il Heum;Choi, Heung Bae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.72-82
    • /
    • 2015
  • In order to effectively and economically apply the previous POM(Princeton Ocean Model) WAD(Wetting And Drying) to the coastal area, the POM WAD was modified such as the water elevation input of tidal harmonics in the open boundaries was included and a CTS(Computing Time Saving) technique was introduced to the model. The modified model was tested to the standing waves in the rectangular bay and the hydraulic experiments for the flow and heat diffusion in the 3D basin. The numerical results showed a good agreement with the analytical solutions of the standing waves and the observed values by the hydraulic experiments, respectively. And also when the modified model with the CTS technique was applied to Gwangyang Bay of Korea, the computing time was decreased by as much as 39.4%.

Basic Research of the Paleo-Environmental Change and Possibility of Ancient Port Location Through Geomorphological Survey and Sediment Analysisin Hwaseong City (화성 당성 유적 일대의 지형 조사 및 퇴적물 분석을 통한 고환경 변화 및 고대 포구 입지 가능성 기초 연구)

  • Han, Min;Yang, Dong-Yoon;Lim, Jaesoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.27-41
    • /
    • 2017
  • In this study, geomorphological and geological research has been carried out to estimate the possibility of ancient port location near Hwaseong Dangseong. Geomorphological characteristics around Eunsupo were analyzed through comparison of past and present topographic maps and field survey. Grain size, age dating, and geochemical analysis on surface sediments and borehole sediments were performed. Through the geomorphological characteristics analysis, it was interpreted that Eunsupo area was submerged in seawater especially at high tide in the past, and that ships could approach to the inside of the area through the tidal channel which were developed in the area. It is also assumed that ships were anchored at a low elevation point in the area. The paleo-environmental change in the area was analyzed based on the classification of sedimentary environment using grain size distribution of surface and borehole sediments and geochemical analysis. It was confirmed that the geomorphological interpretation for the possibility of ancient port location coincided well with the paleo-environmental change interpreted through sediment analysis. This study is a basic study for estimating ancient port location, and it is expected that more accurate paleo-environmental changes will be restored through detailed geomorphological survey and additional borehole analysis in the future research.

A modification of the rip current warning system utilizing real-time observations: a database function of likelihood distributions (실시간 관측정보를 이용한 이안류 경보체계 개선 연구: 발생정도 DB함수의 활용)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.843-854
    • /
    • 2022
  • For the rip current warning system to reduce rip-current accidents, the implementation method producing the risk index was modified. To produce fast response from the warning system based on real-time observations, the method employed the numerical results (i.e., rip current likelihoods according to the possible scenario) obtained in advance. In this study, instead of using the empirical curve-fitting functions of the previous method, the present modification utilized two-dimensional distributions (i.e., wave height and period, wave height and tidal elevation, wave height and direction, wave height and spreading of frequency-directional spectrum) of rip current likelihoods stacked in a database of the system. The wave and tidal observations in 2021 at the Haeundae coast were applied to the modified system, and its performances at several real events recorded in CCTV images were presented.

A Study on Dynamic Water Quality Change for Gate Operation in Seonakdong River (서낙동강 수문 운영에 따른 동적 수질 변화 연구)

  • Kim, Jung Min;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1401-1411
    • /
    • 2013
  • The inflow from Daejeo gate and the outflow from Noksan gate in Seonakdong river, which is a reservoir-like river with the characteristics of stagnant water, is very important for TMDLs (Total Maximum Daily Load) of Nakbon N unit watershed. However, there are very few measured data for calculating base flow. The operating data is much different from the actual measured data because the probable maximum flowrate is used for gate operation. In this study, the operating flowrate data of Daejeo and Noksan gates are compared with the monthly water quality data from Ministry of Environment monitoring station. The dynamic change of the flowrate and the water quality is also measured for the operation of Daejeo and Noksan gates. The flowrate of Seonakdong river is measured, which is affected by the gate operation, the water elevation difference of Nakdong river and Seonakdong river, and the tidal elevation. The results of this study can be used for establishing the water quality improvement measures by the optimal gate operation.

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Thematic and geometric analysis of Bangpo beach based on UAV Remote Sensing (무인항공기반 태안반도 방포해빈의 지형분석)

  • Bae, Sungji;Yu, Jaehyung;Jeong, Yong-Sik;Yang, Dongyoon;Han, Min
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • High resolution aerial photographs and digital elevation models for Bangpo beach using UAV were generated in this study to analyze the thematic and geometric characteristics of coastal features. Based on 728 aerial images acquired on September 10, 2016 by the UAV, a image mosaic at 2.2 cm spatial resolution and a digital elevation model at 4.4 cm spatial resolution were developed. This study found out that Bangpo beach consisted of intertidal zone and supratidal zone. The intertidal zone can be subdivided into lower part and upper part with distinctive geomorphological characteristics. While the lower part included sand bars and ripple marks along the coastline, the cusps and sand dunes were the major coastal features of the upper part. Part of the intertidal zone was occupied by shore platform with average slope of 0.9 degree containing various sizes of gravels. The supratidal zone slanted toward ocean with berms on the surface with an interval of 15 m. These coastal features indicated the flow intensity towards to the land and tidal effect. It validated that the UAV application in coastal research was very effective analyzing to examine coastal processes.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.