• Title/Summary/Keyword: Tidal constituents

Search Result 81, Processing Time 0.032 seconds

The Formulation of the Tidal Prediction System It's Application (조석예보시스템의 구축 및 응용)

  • 정연철;채양범
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • Through the combination of existing tidal prediction model and numerical tidal model, the efficient tidal prediction system was formulated and applied to the neighboring area of Pusan port. Because all tidal constituents for tidal prediction (69 tidal constituents are normally used) couldn't be considered due to the physical limits on computing process, some errors between the observed and predicted values were inevitably occurred. But it was confirmed that the computed values with maximum 10% of relative errors can be obtained if four major tidal constituents(M2, S2, K1, O1) are used. Thus, if other constituents than four major tidal constituents are additionally used, more accurate values will be obtained. Furthermore, if the database for harmonic constants in coastal waters is made in advance, using the numerical tidal model, prompt tidal prediction can be achieved at any time when it is required.

  • PDF

FORMULATION OF THE TIDAL PREDICTION SYSTEM AND IT'S APPLICATION

  • Chul, Jung-Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1997.10a
    • /
    • pp.111-124
    • /
    • 1997
  • With the combination of existing tidal predictio model and numerical tidal model, the efficient tidal prediction system was formulated and applied to the neighboring area of Pusan port. Because all tidal constituents for prediction (normally 69 constituents are used) can't be considered due to difficulties on computing efforts, some errors between the observed and predicted values were inevitably occurred. But it was confirmed that the practical results with about 10% of relative errors were obtained if four major tidal constituents(M$_2$, S$_2$. $K_1$, $O_1$) are used at least. Thus, if other constituents than four major tidal constituents are additornaly used, more accurate results will be obtained . Furthermore, if the databases of harmonic constants in coastal waters is made in advance using the numberical tidal model, prompt tidal prediction could be achieved whenever required.

  • PDF

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

A Study on The Effects of Long-Term Tidal Constituents on Surge Forecasting Along The Coasts of Korean Peninsula (한국 연안의 장주기 조석성분이 총 수위 예측에 미치는 영향에 관한 연구)

  • Jiha, Kim;Pil-Hun, Chang;Hyun-Suk, Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.222-232
    • /
    • 2022
  • In this study we investigated the characteristics of long-term tidal constituents based on 30 tidal gauge data along the coasts of Korea and its the effects on total water level (TWL) forecasts. The results show that the solar annual (Sa) and semiannual (Ssa) tides were dominant among long-term tidal constituents, and they are relatively large in western coast of Korea peninsula. To investigate the effect of long-term tidal constituents on TWL forecasts, we produced predicted tides in 2021 with and without long-term tidal constituents. The TWL forecasts with and without long-term tidal constituents are then calculated by adding surge forecasts into predicted tides. Comparing with the TWL without long-term tidal constituents, the results with long-term tidal constituents reveals small bias in summer and relatively large negative bias in winter. It is concluded that the large error found in winter generally caused by double-counting of meteorological factors in predicted tides and surge forecasts. The predicted surge for 2021 based on the harmonic analysis shows seasonality, and it reduces the large negative bias shown in winter when it subtracted from the TWL forecasts with long-term tidal constituents.

Analysis on the Occurrence Probability Distribution of Tidal Levels using Harmonic Constants (조화상수를 이용한 조위 발생확률분포 분석)

  • Jeong Shin Taek;Cho Hong Yeon;Kim Jeong Dae;Cho Byum Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1053-1057
    • /
    • 2005
  • The occurrence probability (OP) distributions of tide levels using harmonic constants of six tidal gauging stations in Korean coastal zone were estimated and analysed in detail. OP analysis using harmonic constants data of Incheon(Youldo), Mokpo, Yeosu, Pusan, Pohang and Sokcho was carried out and compared with the OP using hourly tidal elevation data which were served through the Internet Homepage by the National Ocean Research Institute. The tidal elevation data were divided by the AHHW (ALLW) value referenced to MSL in order to compare the OP patterns in a relative scale. The OP of the tidal elevation calculated using 38 harmonic tidal constituents relatively well agreed with those of hourly observed tidal elevation data. However, the OP results using four harmonic tidal constituents overestimate the occurrence probability at the peak points and underestimate at the tail-regions of the OP. Especially, the OP patterns of the Sokcho and Pohang tidal gauging stations on the East Sea show totally different patterns and the estimation method using four harmonic constants should be modified and application should be strictly limited on the East Sea areas. The OP patterns are considerably well generated in case of the OP generation using the additional two or three dominant tidal constituents,

  • PDF

Estimating Ocean Tidal Constituents Using SAR Interferometric Time Series over the Sulzberger Ice Shelf, W. Antarctica

  • Baek, Sang-Ho;Shum, C.K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.343-353
    • /
    • 2018
  • Ocean tides in Antarctica are not well constrained mostly due to the lack of tidal observations. Especially, tides underneath and around ice shelves are uncertain. InSAR (Interferometric Synthetic Aperture Radar) data has been used to observe ice shelf movements primarily caused by ocean tides. Here, we demonstrate that it is possible to estimate tidal constituents underneath the Sulzberger ice shelf, West Antarctica, solely using ERS-1/2 tandem mission DInSAR (differential InSAR) observations. In addition, the tidal constituents can be estimated in a high-resolution (~200 m) grid which is beyond any tidal model resolution. We assume that InSAR observed ocean tidal heights can be derived after correcting the InSAR data for the effect of atmospheric loading using the inverse barometric effect, solid earth tides, and ocean tide loading. The ERS (European Remote Sensing) tandem orbit configuration of a 1-day separation between SAR data takes diminishes the sensitivity to major tidal constituents including $K_1$ and $S_2$. Here, the dominant tidal constituent $O_1$ is estimated using 8 differential interferograms underneath the Sulzberger ice shelf. The resulting tidal constituent is compared with a contemporary regional tide model (CATS2008a) and a global tide model (TPXO7.1). The InSAR estimated tidal amplitude agrees well with both models with RMS (root-mean-square) differences of < 2.2 cm and the phase estimate corroborating both tide models to within $8^{\circ}$. We conclude that fine spatial scale (~200 m) Antarctic ice shelf ocean tide determination is feasible for dominant constituents using C-band ERS-1/2 tandem mission InSAR.

A Method for Improvement of Tide and Tidal Current Prediction Accuracy (조위 및 조류 예측 정확도의 개선 방법)

  • Jung, Tae-Sung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.234-240
    • /
    • 2010
  • In order to predict coastal environmental changes caused by coastal development and effectively manage marine environment, the exact information about water level changes and hydrodynamic circulation is essential. However, most of the environmental impact assessment has been using only limited tidal constituents in the numerical tide model to predict the real tide and tidal currents caused by the synthesis of many other tidal constituents, which causes an error in the environmental impact assessment. In this study, a method, which uses the limited tidal constituents at the offshore open boundaries and the observed tide at the inner or nearby point to predict the real tide in the model domain accurately, is suggested. Tidal and tidal currents predicted by the suggested method agreed well with the observations.

Vessel traffic support system (항행안전정보제공시스템)

  • Im, Hyo-Hyuc;Kim, Hyeon-Seong;Han, Dong-Hoon;Kim, Pyeong-Joong;Han, Sang-Cheon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.219-220
    • /
    • 2006
  • In Korea, Yellow sea which is located west side of korea has a between 2.8 to 8.0 m tidal range. So, Vessel Traffic Support System(VTSS) is designed to provide predicted water level, tidal elevation and tide induced current. VTSS has a 58 tidal constituents from 1 year tide observed data and 23 tidal current constituents from 1 month current data at Dang-Jin P.P harbor. Predicted data visualized with graphs, vectors and stick plot. The purpose of VTSS give to information to maritime pilot for help to make decision schedule.

  • PDF

Estimation of Hydraulic Characteristics and Prediction of Groundwater Level in the Eastern Coastal Aquifer of Jeju Island (제주도 동부 해안대수층의 수리특성 산정과 지하수위 예측)

  • Jo, Si-Beom;Jeon, Byung-Chil;Park, Eun-Gyu;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.661-672
    • /
    • 2014
  • Due to tidal force, it is very difficult to estimate the hydraulic parameters of high permeable aquifer near coastal area in Jeju Island. Therefore, to eliminate the impact of tidal force from groundwater level and estimate the hydraulic properties, tidal response technique has been mainly studied. In this study we have extracted 38 tidal constituents from groundwater level and harmonic constants including frequency, amplitude, and phase of each constituent using T_TIDE subroutine which is used to estimate oceanic tidal constituents, and then we have estimated hydraulic diffusivity associated with amplitude attenuation factor(that is the ratio of groundwater level amplitude to sea level amplitude for each tidal constituent) and phase lag(that is phase difference between groundwater level and sea level for each constituent). Also using harmonic constants for each constituent, we made the sinusoidal wave and then we constructed the synthesized wave which linearly combined sinusoidal wave. Finally, we could get residuals(net groundwater level) which was excluded most of tidal influences by eliminating synthesized wave from raw groundwater level. As a result of comparing statistics for synthesized level and net groundwater level, we found that the statistics for net groundwater level was more insignificant than those of synthesized wave. Moreover, in case of coastal aquifer which the impact of tidal force is even more than those of other environmental factors such as rainfall and groundwater yield, it is possible to predict groundwater level using synthesized wave and regression analysis of residuals.

Tidal Computations for the Southern Part of the East Sea (동해 남부해역의 조석계산)

  • 정태성;이종찬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1991
  • A two-dimensional numerical model. using finite element method. was applied to calculation of the tides and tidal currents of four major tidal constituents($M_2, ;S_2, ;K_1, ;O_1$) in the southern part of the East Sea. The model results were compared with the observed data and with the existing tidal charts. and the computed results showed good agreement with the observation. As a result, the detailed tidal charts for four major tidal constituents and the tidal current ellipses of the M$_2$and $K_1$tides were produced respectively. The results indicate that the amphidromic point of diurnal tide locates near Korean coastal lines closer than that of the chart drawn by Nishida(1980).

  • PDF