• Title/Summary/Keyword: Tidal Waves

Search Result 154, Processing Time 0.029 seconds

Real-time Modeling and Rendering of Tidal in Qiantang Estuary

  • Wang, Chang-Bo
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Tidal bore is a peculiar nature phenomenon which is caused by the lunar and solar gravitation. Based on the physical characters of tidal bores, in this paper we propose a novel method to model and render this phenomenon, especially the tidal waves in Qiantang estuary. According to Boltzmann equation for tidal waves, we solve it with the novel triangle mesh of Kinectic Flux Vector Splitting (KFVS) mode. Then a method combining a curve forecasting wave and particles model is proposed to render the dynamic scenes of overturning tidal waves. Finally, with some rendering technologies, various realistic tidal waves under diversified conditions is rendered in real time.

Transport of Sandy Sediments in the Yellow Sea off Tae-An Peninsula, Korea (한반도 황해 중부 태안반도 근해 사질퇴적물의 이동)

  • 최동림;김성렬
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • Tidal sand ridges and sand waves are well developed in the Yellow Sea off Tae-An Peninsula, Korea. Their transport directions were inferred based on high resolution seismic profiles, surficial sediment characteristics and tidal regime. Tidal sand ridges are asymmetric, with long axes parallel to or slightly oblique to the dominant NE-SW tidal current direction. They show steep south and/or southeast flanks, which are in concordance with the apparent direction of internal cross-bedding in the south. Holocene sediments occur in accordance with distributional patterns of tidal sand ridges. These features indicate that Holocene active tidal sand ridges move toward the open sea in southeast, south and southwest direction. Sand waves which are distributed in flat sea floor with depth of about 40-60m show also asymmetric forms with a steep east-to-northeast face. Surficial sediments in the sand wave field are characterized by well sorted fine sands compared with poorly sorted adjacent areas. The sand waves appear to undergo easterly or northeasterly landward movement.

  • PDF

On Tidal Energy Horizontal Circulation (조석에너지의 수평적 순환)

  • Nekrasov, Alexey V.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-177
    • /
    • 1992
  • Some features of tidal energy horizontal flux in the ocean are considered. using the concept of “energy flux ellipses” which is a hodograph of momentary fluxes over a tidal semi-period. A number of characteristics of this ellipse are considered as well as some peculiarities of energy flux field in different types of tidal waves and their combinations (plane, Kelvin, Sverdrup, Poincare, amphidromic system). For forced tidal waves in equatorial channels some results are obtained explaining the dependence of energy flux direction on the channel dimensions.

  • PDF

A Study on the Tidal Characteristics of the Nakdongpo Estuary (낙동포의 조석특성에 관한 연구)

  • 전승환;전홍선
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.2
    • /
    • pp.47-63
    • /
    • 1983
  • In this paper, we have investigated the tidal characteristics of the Nakdongpo estuary. We have carried out the analysis of harmonic constant with the use of the recorded data on tidal level at the Gadeong Do tide station and analyzed the flow velocity data obtained by ourselves at two points in the Nakdongpo estuary. In addition, we have analyzed the variation of the mean-sea level. Typical items of the characteristics we have found are; (1) The principal harmonic constants and non-harmonic constants are shown in table 2. (2) Tide in this area shows the semidiurnal inequality. (3) The mean-sea level is shown to be depressed at the rate of about 1cm to the rise of 1 mbar of the atmospheric pressure. (4) (i) At $K_2$ point, The E-W component of the velocty reveals the nature of progressive waves. The N-S component reveals the nature of stationary waves. (ii) At $K_3$ point, The E-W component shows the characteristics of progressive waves to some degree. The N-S component shows a weak hint of stationary waves. (5) At $K_2$ point, S-component is predominant due to the flow of river. At $K_3$ point, E-component is predominant due to the Tsushima current.

  • PDF

An Example of Internal Wave Detection in North Coastal Waters of Cheju Island Using a SAR Image (SAR를 이용한 제주도 북부해역에서의 내부파 관측예)

  • Kim, Tae-Rim;Won, Joong-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • The satellite image acquired by RADARSAT SAR on August 15, 1996 reveals internal waves in north coastal waters of Cheju Island. It is indicated from the image data, the tidal elevation data, and the bottom topography data, the internal waves seem to be generated by interaction between shallow bottom and tidal currents travelling in the stratified water in the summer time during the tidal changeovers from ebb to flood. The internal waves generated in such condition show patterns of trains of solitons. Probable amplitude of observed solitons is calculated using estimation of the soliton wave length from SAR image data and K-dV equation. Detection of the internal waves is very significant not only to military strategist for underwater maneuvers such as operation of submarines, but also to physical and biological oceanographers. Temporal and spatial variation of the internal waves are needed to be measured by simultaneous in-situ field study together with SAR to examine the nature of these internal waves.

  • PDF

Identifying Three-Dimensional Hydraulic Characteristics of the Sea Region Under Combined Tidal Current and Shock Waves (조류와 충격파가 혼재한 해역의 3차원적 수리특성 분석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.339-346
    • /
    • 2009
  • In this study, the flow characteristics of the sea region, where tidal current and shock waves are combined, are identified using a three-dimensional numerical model (Princeton Ocean Model, POM). The model is adopted and applied for simulating the flows of the sea region near the open sections during the seadike closure work of Sihwa Seadike which was closed in 1994. The simulation results show that the shock waves with high velocities propagate through the sections toward the inside and outside of the seadike during the periods of the spring and ebb tides, respectively. It is found that the phenomena of flow separation occur near the shock waves; as the shock waves extend to wider zones after passing the sections, their effects on the tidal current become weak. In addition, the longitudinal velocity profiles of the flows are revealed to be affected by the shock waves. For all the simulations, at the ebb tide, the drawdown of the water levels occurs in front of the open section, respectively, especially, hydraulic jump occurs when simulating the case of maximum difference in water level between the inside and outside of the seadike. As a result, it is thought that the flow characteristics of the sea region dominated by shock waves need to be identified employing three-dimensional analysis approach, which is expected to provide the information for ocean engineering works and facility management.

An Experiment of Internal Waves Observation by Synthetic Aperture Radar

  • Junmin, Meng;Jie, Zhang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1343-1345
    • /
    • 2003
  • An internal wave observation experiment by SAR in South China Sea is described. Two scenes of Radarsat ScanSAR images were acquired. Internal solitary waves are found in all the two images. It is concluded that these internal waves are generated in Bashi channel. Relationship between internal wave generation and tide is studied based on analyzing of tidal data of Legaspi in Philippine. Using ocean environmental data of this sea area internal waves’ amplitude and wave speed are detected by SAR images.

  • PDF

Wave Inundation at Mokpo Harbor (목포항에서의 풍파로 인한 범람)

  • Lee, Jung-Lyul;Kang, Juo-Hwan;Moon, Seung-Rok;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.574-578
    • /
    • 2006
  • Tidal amplification by construction of the sea-dike and sea-walls had been detected not only near Mokpo Harbor but also at Chungkye Bay which is connected with Mokpo Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of surge-wave combined runup during storms. The purpose of this study is to examine an efficient operational model that can be used by civil defense agencies for real-time prediction and fast warnings on wind waves and storm surges. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. Furthermore, The predicting system is composed of easy and economical tools for inputting depth data of complex bathymetry and enormous tidal flats such as Mokpo coastal zone. The method is applied to Chungkye Bay, and possible inundation features at Mokpo Harbor are analyzed.

  • PDF

Time Dependent Morphological Changes around the Closure Gap in Saemankeum (새만금 방조제 물막이 구간 주변에서의 지형변화예측(수공))

  • 박영욱;어대수;박상현
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.365-370
    • /
    • 2000
  • Sea dike construction for the tidal flat reclamation works in estuary and coast may change the characteristics of tidal motion and wave conditions in the region. In turn, a new hydraulic condition provides the impacts on sediment transport pattern and forms a new morphological environment. Also, morphological changes during the closure works of sea dike are closely related with a safy of sea dike. Therefore, the prediction of morphological changes is required secure the safe closure work and the economic design of sea dikes. To investigate morphological changes due to sea dike construction, hydrodynamic changes of tides and waves have to be evaluated, then sediment transport and sea bottom changes are computed. Mathematical modelling is required for representation of interrelation of tidal motion, wave and sediment transport. In this study, numerical model MORSYS is applied to compute the hydrodynamics and morphological changes around the closure gap for Saemankuem dike. This model allows a flexible integration of the module for waves, currents, sediment transport and bottom changes.

  • PDF

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.