Dalhae, Kim;Won-Gyun, Son;Donghwi, Shin;Jiyoung, Kim;Inhyung, Lee
Journal of Veterinary Science
/
v.23
no.6
/
pp.68.1-68.8
/
2022
Background: Studies on anesthetized dogs regarding pulse pressure variation (PPV) are increasing. The influence of respiratory rate (RR) on PPV, in mechanically ventilated dogs, has not been clearly identified. Objectives: This study evaluated the influence of RR on PPV in mechanically ventilated healthy dogs after hemorrhage. Methods: Five healthy adult Beagle dogs were premedicated with intravenous (IV) acepromazine (0.01 mg/kg). Anesthesia was induced with alfaxalone (3 mg/kg IV) and maintained with isoflurane in 100% oxygen. The right dorsal pedal artery was cannulated with a 22-gauge catheter for blood removal, and the left dorsal pedal artery was cannulated and connected to a transducer system for arterial blood pressure monitoring. The PPV was automatically calculated using a multi-parameter monitor and recorded. Hemorrhage was induced by withdrawing 30% of blood (24 mL/kg) over 30 min. Mechanical ventilation was provided with a tidal volume of 10 mL/kg and a 1:2 inspiration-to-expiration ratio at an initial RR of 15 breaths/min (baseline). Thereafter, RR was changed to 20, 30, and 40 breaths/min according to the casting lots, and the PPV was recorded at each RR. After data collection, the blood was transfused at a rate of 10 mL/kg/h, and the PPV was recorded at the baseline ventilator setting. Results: The data of PPV were analyzed using the Friedman test followed by the Wilcoxon signed-rank test (p < 0.05). Hemorrhage significantly increased PPV from 11% to 25% at 15 breaths/min. An increase in RR significantly decreased PPV from 25 (baseline) to 17%, 10%, and 10% at 20, 30, and 40 breaths/min, respectively (all p < 0.05). Conclusions: The PPV is a dynamic parameter that can predict a dog's hemorrhagic condition, but PPV can be decreased in dogs under high RR. Therefore, careful interpretation may be required when using the PPV parameter particularly in the dogs with hyperventilation.
This experiment was carried out to study the effect of rapid hemorrhage on cardiopulmonary hemodynamics of the cooled dogs. Hypothermia was induced by means of body surface cooling with ice water. Lowest esophageal temperatures ranged from 24 to 26 degree. Dogs were bled via the femoral artery into a reservoir in amount of the equivalent blood volume of 3% of body weight of the dogs. Some dogs were reinfused with the same amount of blood which they lost and others infused with 5% dextrose solution. Fourty adult mongrel dogs were divided into three groups: group I[15 dogs]; dogs were bled in normothermic state. Five dogs had no further treatment, but five dogs were reinfused with blood and five infused with 5% dextrose solution 30 minutes after bleeding. GroupII[10 dogs]; dogs were bled as group I after having been cooled. Five dogs were reinfused with blood as group I. Group III[15 dogs]; dogs were first bled and then cooled. Reinfusion procedures were the same as in group l Results were as follow: 1. The heart rate showed a slight decrease after bleeding in group I and then increased over the control level after 60 minutes. After reinfusion and infusion, the heart rate was also increased gradually and after three hours almost returned to the control level. In group II and groupIll, the heart rate decreased remarkably and after reinfusion showed a light increase but after infusion tended to decrease cotinually. 2. The stroke volume showed remarkable decrease after bleeding in group I., and recovered to control level after reinfusion and infusion,and then gradually decreased again. In group III, the stroke volume showed no remarkable change after hypothermia, and tended to decrease after reinfusion. In group III, the stroke volume decreased remarkably after bleeding and hypothermia,and clearly increased after reinfusion and infusion and then returned to control level. 3. Femoral mean pressure declined very rapidly and significantly right after bleeding and showed a remarkable prompt rise after reinfusion and infusion in group I [67% recovery]. On the other hand, it declined remarkably after hypothermia and bleeding and showed a slight rise after reinfusion and infusion in group II[46% recovery] and III [41% recovery]. 4. Venous pressure declined slightly after bleeding and tended to return to the control level after reinfusion and infusion,in group I. In group II, it did not change significantly during hypothermia but showed a slight decline after bleeding and returned toward control level after reinfusion. In group III, it declined slightly after bleeding and showed no significant change after hypothermia and rose over the control level after reinfusion and infusion. 5. Right ventricular systolic pressure decreased markedly after bleeding and then increased progressively after 30 minutes. It increased after reinfusion and infusion as well, approaching the control level in group I. In group II, it showed no significant change during hypothermia, but decreased remarkably after bleeding and then returned to near control level after reinfusion. In group III, it was decreased markedly after bleeding but did not change significantly during hypothermia and showed a slight increase after reinfusion. 6. The respiratory rate increased gradually after bleeding and decreased gradually after reinfusion but did not return to the control level, whereas it decreased near to the control level after infusion,and tended to increase in group I. In group II, it decreased significantly after hypothermia and bleeding but returned near to the control level after reinfusion. In group III, it showed a remarkable decrease after hypothermia and increased slightly after reinfusion and infusion but did not returned to the control level. In group I, the tidal volume decreased slightly after hemorrhage, and increased gradually to near the control level after 3 hours following reinfusion.
Remarkable effect of pain relief and prevention of the postoperative Complications after thoracotomy has been achieved by continuous intravenous analgesia. This study was carried out with thirty patients who underwent posterolateral thoraco tony. The patients were divided into three groups: Group I(n= 10), the patients with intermittent intramuscular analgesia(piroxicam 20 mg), Group II(n=10), the patients with continuous epidural analgesia(0.5% bupivacaine 30m1 + normal saline 30 ml + morphine 10 mg), and Group III(n= 10) the patients with controlled intravenous infusion of analgesics(fentanyl 2500 mfg +normal saline 10 ml). The results w re as follows; 1) There were no significant changes of vital signs, between groups. 2) Tidal volume and FVC were significantly improved in the group II and III compared with the group I during the first postoperative day. 3) A significant reduction of immediate post-thoracotomy pain was achieved in the group II and III compared with the group I. 4) The limitation of motion in the operative side was less in the group II and III compared with the group I. 5) A signi(icant reduction of the postoperative analgegics consumption was noticed in group II and III. 6) Significant complications were not occured during follow-up period in all groups.
Purpose: In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal regularity and maintaining a more even tidal volume.
Background : Acute lung injury is an hypoxic respiratory failure resulting from damage to the alveolar-capillary membrane, which can be developed by a variety of systemic inflammatory diseases. In this study the therapeutic effects of intra-tracheal pulmonary surfactant instillation was evaluated in the intratracheal endotoxin induced acute lung injury model of a rat. Methods : Twenty Sprague-Dawley rats were divided into 4 groups, and normal saline (2 ml/kg, for group 1) or LPS (5 mg/kg, for group 2, 3, and 4) was instilled into the trachea respectively. Either normal saline (2 ml/kg, for group 1 & 2, 30 min later) or bovine surfactant (15 mg/kg, 30 min later for group 3, 5 hr later for group 5) was instilled into the trachea. The therapeutic effect of intratracheal surfactant therapy was evaluated with one chamber body plethysmography (respiratory frequency, tidal volume and enhanced pause), ABGA, BAL fluid analysis (cell count with differential, protein concentration) and pathologic examination of the lung. Results : Intratracheal endotoxin instillation increased the respiration rate decreased the tidal volume and int creased the Penh in all group of rats. Intratracheal instillation of surfactant decreased Penh, increased arterial oxygen tension, decreased protein concentration of BAL fluid and decreased lung inflammation at both times of administration (30 minute and 5 hour after endotoxin instillation). Conclusion : Intratracheal instillation of surfactant can be a beneficial therapeutic modality as discovered in the acute lung injury model of rats induced by intratracheal LPS intillation. It deserves to be evaluated for treatment of human acute lung injury.
Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics. Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril. Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure. Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.23
no.6
/
pp.482-488
/
2011
Seadike is a coastal structure constructed in the rear region of the foreshore to maximize its usability by preventing direct effect of wave. The expected construction field is determined under the design wave and tidal condition where minor wave overtopping is anticipated. Thus, the location of seadike is generally fixed at the highest site of the surrounding area with seadike crest height controlling the permissible range of wave overtopping volume. But a lot of times, frontal sand beach of the seadike continuously deforms due to incident waves, resulting failure in maintaining its initial slope. The erosion and deposition of the seadike front cause changes in the crest height and volume of wave overtopping and decrease in the setting depth of the seadike, which endangers seadike region as a result. In this study, the relation of local scouring and setting depth of the seadike front in the run-up region is examined by using 2D hydraulic model tests and numerical simulations by modified SBEACH model. As a result, the study learned that if appropriate boundary condition is applied to the modified SBEACH model, it is possible to create practical estimations on the local scouring at the seadike foot when erosive waves flow into the region.
The general flow patterns in the Cheju Strait have been investicated by analyzing the current observations measured in $1986\~1989$ by current meter mooring in 3 north-south sections in the Cheju Strait and at 4 observation points around Cheju Harbour, and measured in $1981\~1987$ by drogue tracking. 1. In the Cheju Strait, there are eastward or northeastward residual currents, which implies that sea waters flow into through the whole western section and flow out through the whole eastern section in the Cheju Strait. The velocity of residual currents are $5.2\~30\;cm/sec$ in 10 m layer and $1.3\~24cm/sec$ in mid-bottom layer. Generally, the flow is strong along the deepest through and the northern part, and weak in the shallow areas near Chuja Islands and Bogil Island. 2. In the western entrance of the Cheju Strait, the observed mean residual velocity is 6.93 cm/sec and the volume transport is 0.384 Sv. There are a big discrepancy between the observed residual currents and the geostrophic currents. 3. Near the frontal areas northwest to Chuja Islands, warm and saline offshore waters, flow northward about 5 miles into the southern coastal areas of the Korean Peninsula in flood, and flow back rather eastward or southeastward than southward in ebb. So, warm and saline waters flow along coastal areas, being mixed with coastal waters. As a result, the northwestern area of Chuja Islands plays a role of the entrance of influx of warm and saline offshore water to the southwestern coastal areas of the Korean Peninsula. It should be stressed that this flow pattern is not due to the residual flows, but to the temporal (tidal) flows.
Background: Research efforts to improve the pulmonary function of people with limited chest function have focused on the diaphragmatic ability to control breathing pattern. Real-time ultrasonography is appropriate to demonstrate diaphragmatic mechanism during breathing. Objective: The purpose of this study was to investigate the effects of diaphragmatic breathing training using real-time ultrasonographic imaging (RUSI) on the chest function of young females with limited chest mobility. Methods: Twenty-six subjects with limited chest mobility were randomly allocated to the experimental group (EG) and control group (CG) depending on the use of RUSI during diaphragmatic breathing training, with 13 subjects in each group. For both groups, diaphragmatic breathing training was performed for 30-min, including three 10-min sets with a 1-min rest interval. An extra option for the EG was the use of the RUSI during the training. Outcome measures comprised the diaphragmatic excursion range during quiet and deep breathing, pulmonary function (forced vital capacity; FVC, forced expiratory volume in 1-sec; FEV1, tidal volume; TV, and maximal voluntary ventilation; MVV), and chest circumferences at upper, middle, and lower levels. Results: The between-group comparison revealed that the diaphragmatic excursion range during deep breathing, FVC, and middle and lower chest circumferences were greater at post-test and that the changes between the pretest and post-test values were greater in the EG than in the CG (p<.05). In addition, the subjects in the EG showed increased post-test values for all the variables compared with the pretest values, except for TV and MVV (p<.05). In contrast, the subjects in the CG showed significant improvements for the diaphragmatic excursion range during quiet and deep breathings, FVC, FEV1, and middle and lower chest circumferences after the intervention (p<.05). Conclusion: These results indicate that using RUSI during diaphragmatic breathing training might be more beneficial for people with limited chest mobility than when diaphragmatic breathing training is used alone.
Journal of Korea Entertainment Industry Association
/
v.14
no.7
/
pp.477-485
/
2020
This study is a random allocation similar experimental study to compare and analyze the difference in BVM (Bag-Valve-Mask) ventilation volume according to the characteristics of the rescuer's hand and the type of mask using a standardized mannequin. To this end, the Basic Life Resuscitation Education Center of D University in gwangju. Recruiting 39 students who have completed the basic resuscitation course for emergency medical personnel and the Korean-style specialized cardiac rescue course, In addition to measuring the physical characteristics of the hand, the average amount of ventilation per minute using a bag-mask was measured and analyzed. As a result, the type of mask that was not most affected by the characteristics of the hand and provided adequate Minute Ventilation was the soft type (tube, silicone) mask. On the other hard (tube, silicone) masks were found to be unsuitable for general use as they were greatly affected by the characteristics of workers' hands. COVID-19 is currently increasing the risk of transmission to paramedics and patients. Considering this situation, the universal use of a semi-permanent hard-type mask, which is disadvantageous not only for preventing infection but also for proper ventilation, should be avoided. In addition to the ease of use, it should be actively utilized in the field by supplying a soft type mask that can provide stable ventilation even with 'predominance recognition' and proper ventilation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.