• Title/Summary/Keyword: Tidal Power System

Search Result 136, Processing Time 0.023 seconds

Periodic Variation of Water Table at a Headwater Catchment in the Gwangneung Ecohydrological Research Site (광릉 수문연구부지 내 원두부 소유역에서 지하수면의 주기적 변동 특성)

  • Kim, Yu-Lee;Woo, Nam-C.;Lee, Sang-Duck;Hong, Tae-Kyung;Kim, Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Periodic fluctuation of water levels were analyzed for their causes and effects on groundwater movement. Groundwater levels were monitored from two shallow monitoring wells, G1 and G4, located at a headwater catchment in the Gwangneung Ecohydrological Research Site using pressure transducers with automatic data-loggers by five-minute interval from February to October, 2006. The water table fluctuates on a daily basis with a clear diurnal variation, and the fluctuation amplitude increases with time from the winter to the summer. Results from spectral analysis of water-level data show periodic variations in 24.38 hour and in 12.19 hour, indicating $P_1$ diurnal and $L_2$ semidiurnal tidal components, respectively. The diurnal component of the water level in summer has greater power than that in winter, implying that the water table is affected not only by earth tides, but also by evapotranspiration. Right after rain stops, the power of diurnal component of the water level decreases, indicating that evapotranspiration influences significantly diurnal periodicity. The effects of diurnal and semidiurnal components of the water level range from 0.4 to 4.2 cm and from 0.2 to 0.7 cm, respectively.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee, Yun-Sok;Jung, Yun-Chul;Kim, Se-Won;Yun, Jong-Hwui;Bae, Suk-Han;Nguyen, Phung-Hung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.165-171
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchoring ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

  • PDF

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee Yun-Sok;Jung Yun-Chul;Kim Se-Won;Yun Jong-Hwui;Bae Suk-Han;Nguyen Phung-Hung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.357-363
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchored ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of the method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

Structural Safety Analysis of FPWEC During Sea Transportation (부유식 파력 장치의 해상운송에 대한 구조 안전성 검토)

  • Cho, Kyu Nam;Kim, Yong Dae;Bae, Jae Hyeong;Shin, Seung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.250-255
    • /
    • 2016
  • Ocean environmental data such as tide, wind, significant wave height etc. along the expected route were collected and analyzed to secure the safe towing and installation of floating pendulum wave energy converter(FPWEC) at planned sea area. Data from Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) were reviewed and those were used to estimate the external forces exerting on the FPWEC during the towing operation. ANSYS system was used for the structural analysis of the FPWEC which is subject to complex environmental load to confirm the safety.

Analysis of the behavior of gray rockfish (Sebastes schlegelii Hilgendorf) on the construction of wind power generators in the sea area around Byeonsan Peninsula, Korea (변산반도 주변해역에서 풍력발전기 건설공사에 대한 조피볼락(Sebastes schlegelii Hilgendorf )의 행동분석)

  • HEO, Gyeom;HWANG, Doo-Jin;MIN, Eun-Bi;OH, Sung-Yong;PARK, Jin Woo;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.129-137
    • /
    • 2019
  • This study was conducted to investigate the effects of underwater noise caused by pile driving during marine construction on fish. In this study, the three gray rockfish were released about 1 km away from the construction site of wind power generation on July 18, 2018 and traced using two acoustic telemetry techniques. The behavior of the fish was analyzed by calculating the moving distance, swimming speed and direction of the gray rockfish. In the results of the acoustic tracking using the ship, the rockfish moved about 2.11 km for about two hours at a speed of $0.28{\pm}0.14m/s$ (0.94 TL/s). The bottom depth of the trajectory of the rockfish was $1.0{\pm}0.6m$ on average. There was a significant directionality in swimming direction of the gray rockfish, and there was no significant correlation between the swimming direction and tidal current direction. Moving distance during 5 minutes (5MD) during pile driving and finishing operations between rock surface and bedrock were 0.94-0.96 times (76.0-77.0 m) and 1.81-2.73 times (146.0-219.5 m), respectively, compared with no pile driving. This study is expected to be used as a basic data of fish behavior research on underwater noise.

Some case histories to detect underwater buried objects by electrical and magnetic methods (수중 매장물 조사에 응용되는 전기 및 자기 탐사사례)

  • JUNG Hyun Key;Park Yeong-Sue;Lim Mutaek;Rim Hyoungrae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.118-137
    • /
    • 2004
  • Recently underwater geophysical problems for historical relics or UXO's are raised frequently. This study includes the applicabilities and limitations of the recent underwater metal detector and domestic case stories for underwater survey by electrical and magnetic method. Direct or indirect case stories are electrical and vertical magnetic gradiometry surveys beneath Han-river bottom for planning subway tunnel, electrical exploration on lake-bottom, electrical exploration on the tidal flats using high-power transmitter, and borehole three-component magnetic and electromagnetic surveys for detecting the undersea objects. A design of potable real-time, high-speed measurement system using multi-channel array sensors is also introduced here. Further study will be focussed on practical field applications of the fast water-bottom scanning system which is lately required by actual field.

  • PDF

Study of Scattering Mechanism in Oyster Farm by using AIRSAR Polarimetric Data (AIRSAR 다중편파 자료를 이용한 굴 양식장 산란현상 연구)

  • Lee Seung-Kuk;Hong Sang-Hoon;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.303-316
    • /
    • 2005
  • Strong radar returns were observed in oyster sea farms, and coherent interferometric pairs were successfully constructed. Tide height in coastal area is possible to be measured by using interferometric phase and intensity of SAR data. This SAR application technique for measuring the tide height in the near coastal zone can be further improved when applied to double bounce dominant areas. In this paper, we investigate the characteristics of polarimetric signature in the oyster farm structures. Laboratory experiments were carried out using Ku-band according to the target scale. Radar returns from vertical poles are stronger than those from horizontal Pole by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with the height of vertical poles, which implies double bounce is more useful to determine water level than total power. A L-band NASA/IPL airborne SAR (AIRSAR) image was classified into single-, double-bounce, and volume scattering components. It is observed that oyster farms are not always characterized by double bounced scattering. Double bounce is a main scattering mechanism in oyster farms standing above seawater, while single bounce is stronger than double bounce when bottom tidal flats are exposed to air. Ratios of the normalized single to double bounce components in the former and latter cases were 0.46 and 5.62, respectively. It is necessary to use double bounce dominant sea farms for tide height measurement by DInSAR technique.