• Title/Summary/Keyword: Tibialis Anterior

Search Result 435, Processing Time 0.025 seconds

Effect of Jumping Exercise on Supporting Surface on Ankle Muscle Thickness, Proprioception and Balance in Adults with Functional Ankle Instability

  • Park, Chibok;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1756-1762
    • /
    • 2019
  • Background: Functional ankle instability (FAI) indicating a decrease in muscle strength, proprioception, neuromuscular control, balance and postural control function. Objective: To investigate the effect of jumping exercise on the supporting surface on the ankle muscle thickness, proprioceptive sensation, and balance in adults with FAI. Design: Randomized Controlled Trial. Methods: Twenty young people with FAI were randomly assigned to the unstable supporting surface jump group (N=10) and the stable supporting surface jump group (N=10). The intervention was conducted three times a week for eight weeks, and for 30 minutes per session. Trampoline was used as an unstable support surface and the stable support surface was carried out on a regular floor. The thickness of the tibialis anterior muscle and medial gastrocnemius muscle was measured by ultrasonography, and the proprioception of dorsiflexion and plantarflexion was measured using an electrogoniometer. The dynamic balance was also measured with a balance meter. Results: The the muscle thickness of the medial gastrocnemius muscle was significantly higher in the stable supporting surface jump group than in the unstable supporting surface jump group (p<.05). Furthermore, the plantar flexion proprioception and dynamic balance were significantly improved in the unstable supporting surface jump group than in the stable supporting surface jump group in the intergroup comparison (p<.05). Conclusions: The conclusion has been reached in this study that the jumping exercise on the unstable supporting surface could be a more effective in improving FAI than the regular surface.

The Effect of Pressure Belt during PNF Sprinter Pattern Training Using Thera-band on Leg Muscle Strength and Gait in Stroke Patients: One-group Pretest-post Test Design (가압벨트 착용이 탄성밴드를 이용한 PNF 스프린터 패턴 훈련 시 뇌졸중 환자의 다리 근력 및 보행에 미치는 영향)

  • Lee, Seung-tae;Bae, Sea-hyun;Kim, Kyung-yoon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • Background: This study was conducted to investigate the effects of pressure belt during proprioceptive neuromuscular facilitation sprinter pattern training using a Thera-band on leg muscle strength and gait in stroke patients with stroke. Methods: Nine patients with stroke underwent training five times a week for four weeks, and changes in the muscle strength and walking ability of the paralyzed leg before and after training were measured. Muscle strength was measured using a Digital muscle tester, and walking ability was measured using a G-WAKER and the timed up and go (TUG) test. Results: Results showed that the quadriceps, hamstring, tibialis anterior, gastrocnemius, cadence, stride length, and stance phase significantly increased (p<.05). The swing phase, gait cycle duration, and TUG test results significantly decreased (p<.05). Conclusion: This study demonstrated that a pressure belt is a very useful tool for improving muscle strength and walking ability in patients with stroke.

The Effects of Proprioceptive Neuromuscular Facilitation Applied to the Lifting on the EMG Activation of Contralateral Lower Extremity (고유수용성신경근촉진법의 들어올리기가 반대측 하지의 근활성도에 미치는 영향)

  • Kwak, Seon-Kyu;Ki, Kyong-Il;Kim, Dae-Yeon;Kim, Ki-Yeong;Youn, Hye-Jin
    • PNF and Movement
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose : The purpose of present study was to investigate the effects of proprioceptive neuromuscular facilitation (PNF) lifting on contralateral leg muscle activities in a seated position. Methods : Twenty healthy subjects were recruited for this study. Lifting was performed from each of the three position. An surface electromyogram (EMG) was used to record the EMG activities from vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius medialis (GM) in contralateral leg muscle. The data were analyzed using a repeated measures of one-way analysis of variance (ANOVA) with post-hoc Bonferroni's correction to determine the statistical significance. Results : The results of this study were summarized as follows: In comparison to the start position, percentage maximal voluntary isometric contraction (%MVIC) values of the VM, TA and GM demonstrated a significantly higher activities in the end position(p<.05). Conclusion : The result shows that contralateral leg muscles activities significantly more increase in the end position when PNF lifting was applied. Therefore, this study will be used to prove effect of indirect approach for the stability and strengthening in patients with leg impairments.

Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study

  • Park, Seju;Jeong, Hojin;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2272-2278
    • /
    • 2021
  • Background: Vibration stimulation has emerged as a treatment tool to help reduce spasticity during physical therapy. Spasticity includes problems of reduced range of motion (ROM) and stiffness. However, the benefits of vibration rolling (VR) on interventions for stroke patients are unclear. Objectives: This study aimed to investigate the effect of VR intervention on the ankle ROM and ankle stiffness in stroke patients. Design: A randomized crossover study. Methods: Seven stroke patients completed two test sessions (one VR and one non-VR [NVR]) in a randomized order, with 48 hours of rest between each session. Participants completed intervention and its measurements on the same day. The measurements included ankle dorsiflexion and plantarflexion ROM and stiffness of ankle muscles, including the tibialis anterior, medial, and lateral gastrocnemius muscle. Results: After VR, ankle dorsiflexion ROM, lateral gastrocnemius stiffness, and medial gastrocnemius stiffness improved significantly (all P<.05). After NVR, only the lateral gastrocnemius stiffness improved significantly (P<.05). Furthermore, in the cases of changed values for ankle dorsiflexion ROM and lateral gastrocnemius stiffness were compared within groups, VR showed a more significant difference than NVR (P<.05) Conclusion: VR improved ankle ROM and muscle stiffness. Therefore, we suggest that practitioners need to consider VR as an intervention to improve dorsiflexion ROM and gastrocnemius stiffness in stroke patients.

The Effects of Visual Biofeedback Information on Hyperextended Knee Control

  • Jung, Sung-hoon;Jeon, In-cheol;Ha, Sung-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Purpose: A hyperextended knee is described as knee pain associated with an impaired knee extensor mechanism. Additionally, a hyperextended knee may involve reduced position sense of the knee joint that decreases the individual's ability to control end-range knee extension movement. The purpose of this study was to investigate the effects of visual biofeedback information for plantar pressure distribution on knee joint angle and lower extremity muscle activities in participants with hyperextended knees. Methods: Twenty-three participants with hyperextended knees were recruited for the study. Surface electromyography signals were recorded for the biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior muscle activities. The plantar pressure distribution was displayed and measured using a pressure distribution measuring plate. Knee joint angle kinematic parameters were recorded using a motion analysis system. The visual biofeedback condition was the point at which the difference between the forefoot and backfoot plantar foot pressure on the monitor was minimized. The Wilcoxon signed-rank test was used to determine the significance between the visual biofeedback condition and the preferred condition. Results: The knee joint angle was significantly decreased in the visual biofeedback condition compared to that in the preferred condition (p<0.05). The rectus femoris and gastrocnemius muscle activities were significantly different between the visual biofeedback and preferred conditions (p<0.05). Conclusion: The results of this study showed that visual biofeedback of information about plantar pressure distribution is effective for correcting hyperextended knees.

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

Effects of Functional Electrical Stimulation (FES) on the Temporal-spatial Gait Parameters and Activities of Daily Living in Hemiplegic Stroke Patients

  • Oh, Dong-Gun;Yoo, Kyung-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.37-44
    • /
    • 2021
  • PURPOSE: This study examined the effects of functional electrical stimulation (FES) on temporal-spatial gait and the activities of daily living in hemiplegic stroke patients. METHODS: The subjects were 29 hemiplegic stroke patients (57.7 ± 10.3). The patients walked at a self-controlled speed in four states: (1) walking without FES (non-FES), (2) walking with FES on the gluteus medius in the stance phase (GM), (3) walking with FES on the common peroneal nerve and tibialis anterior in the swing phase (PT), (4) walking with both GM and PT. A GAITRite system, Timed-Functional Movements battery, and Timed UP and Go test were used to measure the variables. RESULTS: Significant improvements were observed in all variables of the GM+PT, GM, and PT states compared to the non-FES state (p < .05). There were significant improvements in the GM+PT state compared to GM and PT states (p < .05). Moreover, significant improvements were noted in the single support time on the affected side, backward walking 10ft, and side stepping 10ft on the affected side of the GM state compared to the PT state (p < .05). There were significant improvements in the stride length on the affected side and side stepping 10ft on the unaffected side of the PT state compared to the GM state (p < .05). CONCLUSION: FES is effective in improving the temporal-spatial gait and activities of daily living in hemiplegic stroke patients.

Differences in Ankle Muscle Activity During Static Balance According to Age and Ankle Proprioception

  • Kim, Seo-hyun;Yi, Chung-hwi;Han, Gyu-hyun;Kim, Su-bin
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2022
  • Background: Older adults use different ankle muscle activation patterns during difficult static balance conditions. It has been suggested that this is related to a decline in proprioception with age, resulting in reduced postural balance. However, the association between proprioception and ankle muscle activity during quiet standing has not been directly assessed. Objects: This study aimed to investigate the effects of age and sensory condition on ankle muscle activity and the association between ankle proprioception and ankle muscle activity. Methods: We recruited 10 young women and 9 older women. Ankle proprioception was evaluated using joint position sense (JPS) and force sense (FS) divided by dorsiflexion and plantarflexion. The electromyographic activity of the tibialis anterior (TA) and gastrocnemius (GCM) muscles was collected during quiet standing. Results: Older women activated GCM muscle more than young during quiet standing and when performing difficult tasks. Older women had more errors in JPS dorsiflexion and FS plantarflexion than did young. The GCM muscle activity is related to JPS dorsiflexion and FS plantarflexion. Conclusion: Lower proprioception of the GCM with age leads to increased muscle activity, resulting in reduced postural balance. There was no difference in TA proprioception or muscle activity among older women with frequent physical activity.

The development of new electromyographic parameters to diagnose low-back pain patients during sagittal flexion/extension motion

  • Kim, J.Y.
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.21-25
    • /
    • 1996
  • The Electomyographic (EMG) signals of flexor-extensor muscle pairs were investigated to identify the neural excitation pattern of low-back pain (LBP) patients during a repetitive bending motion. New parameters and EMG normalization technique were developed to quantitatively represent the difference of temporal EMG patterns between ten healthy subjects and ten LBP patients. Flexor-extensor muscle pairs such as rectus abdominis(RA)-erector spinae (ES at LS), external oblique(EO)-internal oblique(IO), rectus femois (quadriceps: QUD)-biceps femoris(hamstrings:HAM), and tibialis anterior(TA)-gastrocnemius(GAS) pairs of muscles were selected in this study. Results indicated that the temporal EMG pattern such as the peak timing difference of QUD-HAM muscle pair and the duration of coexcitation of ES-RA muscle pair showed a statistically isgnificant difference between healthy subjects and LBP patients. These results indicated that the new technique and parameters could be used as a diagnostic tool especially for LBP patients with soft tissue injuries that are rarely dentified by traditional imaging techniques such as X-ray, CT scan or MRI. Improtantly, the new EMG technique did not require the maximal volutary contraction(MVC) measure for normalization that helped patients minimize the pain experience during and after the session. Further study needs to be made to validate and refine this method for clinical application.

  • PDF

Effects of Heel-raise-lower with Kinesio Taping of Triceps Surae on Spasticity and Balance Ability in Patients with Chronic Stroke (종아리근육 키네시오 테이핑을 병행한 발뒤꿈치 들기 훈련이 만성 뇌졸중 환자의 강직 및 균형능력에 미치는 영향)

  • Kyung-Hun Kim
    • PNF and Movement
    • /
    • v.21 no.2
    • /
    • pp.213-222
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes. Methods: The participants were divided randomly into the HKT group and heel-raise-lower with sham (control group), with 38 participants assigned to each group. Both groups received heel-raise-lower lifting 100 times, 5 times/week for 4 weeks. The HKT group applied Kinesio Taping to the calf muscles. The control group applied Kinesio Taping transversely to the ankle joint and tibialis anterior muscle. The composite spasticity score was used to evaluate the ankle plantar flexors. The center of pressure with the eyes open and closed and limited stability was measured using BioRescue equipment. Both groups evaluated spasticity and balance ability before the experiment and after 4 weeks. Statistical methods before and after working around spasticity and balance ability were independent t-tests. Results: After training, spasticity showed significant improvement in the HKT group and in the control group (p < 0.05). Similarly, balance ability was significantly more improved in the HKT group after 4 weeks of training compared to the control group (p < 0.05). Conclusion: We confirmed the effects of heel-raise-lower with Kinesio Taping (HKT) on spasticity and balance ability in patients with chronic strokes.