• Title/Summary/Keyword: TiO2-doped

Search Result 643, Processing Time 0.036 seconds

A Study on Property Distribution of [011] Poled Mn:PIN-PMN-PT Single Crystals Grown by Bridgeman Method (Bridgeman 성장 [011] 분극 Mn:PIN-PMN-PT 압전단결정의 물성 분포 연구)

  • Soohyun Lim;Yub Je;Yohan Cho;Sang-Goo Lee;Hee-Seon Seo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.412-419
    • /
    • 2024
  • Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals, which exhibit improved phase transition temperatures and coercive field properties compared to Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (PIN-PMN-PT) single crystals, are expected to be utilized in high-power acoustic transducers. Bridgeman method, growing single crystals along the axial direction from melt, is most widely used method for single crystal growth with large size and high quality. However, single crystal boules grown by the Bridgeman method demonstrate a PT compositional variation, giving rise a distribution of crystal structure and material properties along the growing axis. To employ piezoelectric single crystals grown by the Bridgeman method for acoustic transducers, it is essential to investigate their overall property distribution. In this study, the compositional distribution and property variation of Mn:PIN-PMN-PT single crystals grown by the Bridgeman method was investigated. Measured compositional distribution of PT was from 29% to 32.5% in the Rhombohedral crystal region of the boule. Two types of specimen, [011]-poled Mn:PIN-PMN-29PT and Mn:PIN-PMN-32PT single crystals, were fabricated and tested to obtain full property variation at both ends of the Rhombohedral crystal region. The properties related to the 32 directional vibration mode and the properties related to high-power driving were measured to confirm the overall distribution of properties by composition.

Effects of Operating Parameters on Electrochemical Degradation of Rhodamine B and Formation of OH Radical Using BDD Electrode (BDD 전극을 이용한 OH 라디칼 생성과 염료 분해에 미치는 운전인자의 영향)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1143-1152
    • /
    • 2010
  • The purpose of this study is to degradation of Rhodamine B (RhB, dye) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the electro-generation of OH radical) in solution using boron doped diamond (BDD) electrode. The effects of applied current (0.2~1.0 A), electrolyte type (NaCl, KCl, and $Na_2SO_4$) and electrolyte concentration (0.5~3.0 g/L), solution pH (3~11) and air flow rate (0~4 L/min) were evaluated. Experimental results showed that RhB and RNO removal tendencies appeared with the almost similar thing, except of current. Optimum current for RhB degradation was 0.6 A, however, RNO degradations was increased with increase of applied current. The RhB and RNO degradation of Cl type electrolyte were higher than that of the sulfate type. The RhB and RNO degradation were increased with increase of NaCl concentration and optimum NaCl dosage was 2.5 g/L. The RhB and RNO concentrations were not influenced by pH under pH 7. Optimum air flow rate for the oxidants generation and RhB and RNO degradation were 2 L/min. Initial removal rate of electrolysis process was expressed Langmuir - Hinshelwood equation, which is used to express the initial removal rate of UV/$TiO_$2 process.

Aging Effects in the Two-phase Intermetallic compounds Based on Cr-doped $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$ (Cr 첨가 $\textrm{Ll}_2\textrm{Al}_3\textrm{Ti}$기 2상 금속간화합물의 시효처리 효과)

  • Lee, Jae-Gyeong;Park, Jeong-Yong;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.951-955
    • /
    • 1999
  • Two-phase Al-21Ti-23Cr alloy containing 20 vol.% $\textrm{Cr}_{2}\textrm{Al}$ as a second phase in the $Ll_2$ matrix is located in the two- phase region of the Al- Ti- Cr phase diagram at $1150^{\circ}C$, while in the three-phase region at $1000^{\circ}C$. Based on this result, the mechanical properties of the A1-21Ti-23Cr alloy were enhanced through the refined precipitation of the third phase in the $Ll_2$ matrix by aging the alloy below $1000^{\circ}C$. It was observed that a several ,m of the third phase precipitated in the $Ll_2$ matrix through aging at $800^{\circ}C$ and $1000^{\circ}C$, but the precipitation was not observed below $600^{\circ}C$. Furthermore, the third phase was more finely precipitated at $800^{\circ}C$ than at $1000^{\circ}C$. Although the third phase precipitated at $800^{\circ}C$ and at $1000^{\circ}C$, the compressive yield strength increased rapidly at $800^{\circ}C$ only. This is probably attributable to the refined precipitation of the third phase in the $Ll_2$ matrix. It is expected that the precipitation of the third phase. which was confirmed to be the TiAlCr phase, improves the mechanical properties by preventing crack propagation in the $Ll_2$ matrix.

  • PDF

Electrical properties of n-type $WO_{3}$ based gas sensors (N-형 $WO_{3}$계 가스센서의 전기적 특성)

  • Yang, Jong-In;Kim, Il-Jin;Lim, Han-Jo;Han, Sang-Do;Chung, Kwan-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.188-196
    • /
    • 1998
  • The sensing and electrical characteristics of $WO_{3}$-based n-type semiconductor gas sensors are investigated. In normal air condition, $TiO_{2}$(4 wt. %)-doped $WO_{3}$-based sensor fabricated without any binder shows the grain boundary ( GB ) potential barrier height of 0.26 V. Sensors fabricated with alumina, PVA and silica sol binders show 0.17, 0.22 and 0.26 V of GB potential barrier height, respectively. In the ambience of 120 ppm $NO_{x}$ concentration, the GB potential barrier height of the sensor fablicated without binder is increased to 0.59 V. The sensors were fabricated with alumina, PVA, silica sol binders show 0.43, 0.66 and 0.52 V of potential barrier, respectively. Thus the variation of the potential barrier at GB is largest in the sensor fabricated with the PVA binder. This is found to be the main reason why the sensor fabricated with the PVA binder shows the best sensitivity. It is also found that the decrease of sensitivity at a temperature higher than the optimum operation temperature is due to the temperature dependence of the sensor resistance in normal air condition rather than the desorption of the adsorbed $NO_{x}$ gas particles. In the ambience of 250 ppm CO concentration, the GB potential barrier heights of the sensors fabricated without binder and with PVA binder are about 0.2 V showing negligible change compared to the case of normal air ambience. This fact indicates that these sensors are good candidates for the selective detection of $NO_{x}$ gas in the mixture of CO and $NO_{x}$ gases.

  • PDF

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern (미세 전극 패턴을 갖는 알루미나 정전척을 이용한 LED용 사파이어 기판 흡착 연구)

  • Kim, Hyung-Ju;Shin, Yong-Gun;Ahn, Ho-Kap;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.4
    • /
    • pp.165-171
    • /
    • 2011
  • In this work, handling of sapphire substrate for LED by using an electrostatic chuck was studied. The electrostatic chuck consisted of alumina dielectric, which was doped with 1.2 wt% $TiO_2$. As the volume resistivity of alumina dielectric was decreased, the electrostatic force was increased by Johnsen-Rahbek effect. The narrower width and gap size of electrode led to the stronger electrostatic force. When alumina dielectric with $3.20{\times}10^{11}{\Omega}{\cdot}cm$ resistivity and 3 mm width/1.5 mm gap sized electrode was used, the strongest electrostatic force in this work was obtained, which value reached to ~14.46 gf/$cm^2$ at 2.5 kV for 4-inch sapphire substrate. This results show that alumina electrostatic chuck with low resistivity and fine electrode pattern is suitable for handling of sapphire substrate for LED.

Optical and Electrical Properties of Thin Film Electroluminescent Devices with SrS:Cu, Ag Phosphor Layer

  • Chang, Ho-Jung;Park, Jun-Seo;Chang, Young-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2002
  • The SrS:Cu, Ag thin film electroluminescient devices were fabricated on $AlTiO_3$/ITO/glass substrates by electron-beam evaporation. The emission spectrum of the device was about 460 nm with $\chi$=0.20, y=0.29 in the CIE color coordinator. It was found that the emission spectrum was saturated to pure blue color when Ag sensitizer was doped in SrS:CuCl phosphors. The luminance of the device was increased by increasing the sulfur pressure. The measured luminance was saturated with 430 cd/$m^2$at the applied voltage of 90 V and the maximum luminance was 580 cd/$m^2$at 110V. The polarization charge and conduction charge of the devices were found to be found to be about $3.5\mu$C/$\textrm{cm}^2$ and $7.4\mu$C/$\textrm{cm}^2$, respectively.

  • PDF

Advanced Optical and Electrical Properties of TIO Thin Films by Thermal Surface Treatment of Electron Beam Irradiation (전자빔 열 표면처리에 따른 TIO 박막의 투명전극 특성 개선 효과)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.193-197
    • /
    • 2023
  • Transparent and conducting titanium (Ti) doped indium oxide (TIO) thin films were deposited on the poly-imide (PI) substrate with radio frequency magnetron sputtering and then electron irradiation was conducted on the TIO film's surface to investigate the effect electron irradiation on the crystallization and opto-electrical properties of the films. All x-ray diffraction (XRD) pattern showed two diffraction peaks of the In2O2 (431) and (444) planes with regardless of the electron beam irradiation energy. In the AFM analysis, the surface roughness of as deposited films was 3.29 nm, while the films electron irradiated at 700 eV, show a lower RMS roughness of 2.62 nm. In this study, the FOM of as deposited TIO films is 6.82 × 10-3 Ω-1, while the films electron irradiated at 500 eV show the higher FOM value of 1.0 × 10-2 Ω-1. Thus, it is concluded that the post-deposition electron beam irradiation at 500 eV is the one of effective methods of crystallization and enhancement of opto-electrical performance of TIO thin film deposited on the PI substrate.

Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives (염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망)

  • Kwon, Young Jin;Kim, Hwan Kyu
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.

High-Luminous Efficiency Full-Color Emitting $GdVO_4$:Eu, Er, Tm Phosphor Thin Films

  • Minami, Takatsugu;Miyata, Toshihiro;Mochizuki, Yuu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1091-1094
    • /
    • 2004
  • High-luminous efficiency full-color emissions in photoluminescence (PL) were obtained in $GdVO_4$ phosphor thin films co-doped with various amounts of Eu, Er and/or Tm and postannealed at approximately 1000$^{\circ}C$. The $GdVO_4$:Eu,Er,Tm phosphor thin films were deposited on thick $BaTiO_3$ ceramic sheets by r.f. magnetron sputtering using powder targets and postannealed in an air atmosphere. The rare earth (RE) content (RE/(Gd+V+RE) atomic ratio) in the oxide phosphor thin films was varied in the range from 0.1 to 2 at.%. It was found that the excitation of $GdVO_4$:Eu.Er,Tm thin films is attributed to band-to-band transition. A white PL emission was obtained in a $GdVO_4$:Eu,Er,Tm thin film with Eu, Er and Tm contents of 0.2, 0.7 and 1 at.%, respectively: CIE chromaticity color coordinates. (X=0.352 and Y=0.351). In addition, a white emission was obtained in a thin-film electroluminescent (TFEL) device made with this thin film.

  • PDF