• Title/Summary/Keyword: TiO2 catalyst

Search Result 443, Processing Time 0.03 seconds

REACTIVITY AND DURABILITY OF V2O5 CATALYSTS SUPPORTED ON SULFATED TIO2 FOR SELECTIVE REDUCTION OF NO BY NH3

  • Choo, Soo-Tae;Nam, Chang-Mo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • The selective catalytic experiments using both sulfated/sulfur-free titania and V2O5/TiO2 catalysts have been conducted for NO reduction by NH3 in a packed-bed, down-flow reactor. The sulfated and vanadia loaded titania exhibited higher activity for NO removal than the sulfur-free catalysts, where > 90% NO removal was achieved over the sulfated V2O5/TiO2 catalyst between 280∼500 C. The surface structure of vanadia species on the catalyst surface played a critical role in the high performance of catalysts in which the existence of monomeric/polymeric vanadate is revealed by Raman spectra studies. Water vapor and SO2 were added to the reacting system for the catalyst deactivation tests. At higher temperatures (T ≥ 350 C), little deactivation was observed over the sulfated V2O5/TiO2 catalysts, showing good durability against SO2 and water vapor, which is compared with deactivation at lower temperatures.

Thermal Deactivation of Plate-type V2O5-WO3/TiO2 SCR Catalyst (Plate-type V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성)

  • Cha, Jin-Sun;Park, Jin-Woo;Jeong, Bora;Kim, Hong-Dae;Park, Sam-Sik;Shin, Min-Chul
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.576-580
    • /
    • 2017
  • In the present paper, the thermal deactivation characteristics of plate-type commercial $V_2O_5-WO_3/TiO_2$ SCR catalyst were investigated. For this purpose, the plate-type catalyst was calcined at different temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ for 3 hours. Structural and morphological changes were characterized byXRD, specific surface area, porosity, SEM-EDS and also NOx conversion with ammonia according to the calcine temperature. The NOx conversion decreased with increasing calcine temperature, especially when the catalysts were calcined at temperatures above $700^{\circ}C$. This is because the crystal phase of $TiO_2$ changed from anatase to rutile, and the $TiO_2$ grain growth and $CaWO_4$ crystal phase were formed, which reduced the specific surface area and pore volume. In addition, $V_2O_5$, which is a catalytically active material, was sublimated or vaporized over $700^{\circ}C$, and a metal mesh used as a support of the catalyst occurred intergranular corrosion and oxidation due to the formation of Cr carbide.

Preparation of $TiO_2-SiO_2$ by Sol-Gel Method and Their Photocatalytic Activities (졸-겔법에 의한 $TiO_2-SiO_2$합성 및 광촉매활성)

  • 류완호;양천희
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1999
  • $TiO_2$ and $xTiO_2-ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area was measured. Considering the efficiency of the ethanol decomposition using the catalyst, the conclusion was made as follows: 1) By means of X-ray analysis of $TiO_2$ powder that is obtained from water and Titanium alkoxide with various molar ratios, it is shown that structure of crystallization is a dominating structure and, on the other hand, the crystallization of rutile also partly exists. The specific surface area is at its maximum value at R=6, which is the molar ratio of water vs. alkoxide, whereas its value goes down as the molar ratio increases. In the reaction of using $TiO_2$ catalyst, the ethanol is decomposed into the extent of 15 ~30% in an hour and three hours are necessitated for 70% decomposition. 2) $TiO_2/SiO_2$ powder is developed from Titanium and Silicon alkoxide by a hetero-condensation process. The increase of SiO$_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. In the decomposition reaction of the ethanol, the decomposition efficiency represents 25~60% in an hour. It is, however, examined that the efficiency inactively increases corresponding to the duration of reaction time. It is shown that more than 90% of ethanol is decomposed when reaction time is about three hours and the efficiency illustrates the maximum value for 60-$TiO_2/4O-SiO_2$ catalyst.

  • PDF

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • Sin, Byeong-Gil;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

Catalytic Reactions of Ethanol over $TiO_2$-supported Vanadia Catalysts

  • Jeon, Byung-Wook;Kim, Yu-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.284-284
    • /
    • 2012
  • In this study, $V_2O_5/TiO_2$ catalyst was measured reactivity of ethanol when vanadia ratio was increasing. First, $V_2O_5/TiO_2$ catalyst was prepared to the increasing vanadia ($VO_x$) ratio as 0.2, 1, 10 wt%. And we were used X-ray diffraction (XRD), then not appear markedly peak to pure vanadia about XRD analysis. So we were decided vanadia that was evenly dispersed on $TiO_2$. Result about temperature-programmed reduction (TPR) analysis was obtained 3 reactions that was dehydrogenationfrom obtained to acetaldehyde, dehydration from obtained to ethylene, condensation from obtained to diethyl ether. If vanadia ratio was increasing in $V_2O_5/TiO_2$, reactions temperature of ethanol was known lower. And condensation into diethyl ether is quenched away with increasing vanadia loading. In addition, competition between reductive dehydration and oxidative dehydrogenation occurs, while the selectivity toward dehydrogenation is favored with increasing vanadia loading.

  • PDF

Preparation of BaTiO3 Thick Film by an Interfacial Polymerization Method

  • Iwasaki, Mitsunobu;Park, Won-Kyu
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.548-554
    • /
    • 2007
  • [ $BaTiO_3$ ] thick film by an interfacial polymerization method was prepared at the liquid/liquid interface between benzyl alcohol saturated solution with the basic catalyst [diethyl amine ($NHEt_2$) or triethylamine ($NEt_3$)], and the water dissolved with $TiO_2$ and $Ba(CH_3COO)_2$. The film thickness increased gradually with an increase in diethyl amine($NHEt_2$) or triethylamine($NEt_3$) volume and the reaction time. The homogeneity of $BaTiO_3$ thick film after sintered at $600^{\circ}C$ was confirmed by EPMA analysis, which showed that both of Ba and Ti element were homogeneously distributed on the surface as well as in the perpendicular direction of the film. The thickness of $BaTiO_3$ film obtained by this process was $8.75\;{\mu}m$.

Hydrothermally Synthesized TiO2 Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries

  • Kang, Seung Ho;Song, Kyeongse;Jung, Jaepyeong;Jo, Mi Ru;Khan, M. Alam;Kang, Yong-Mook
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-48
    • /
    • 2014
  • $TiO_2$ nanoparticles (NPs) with a diameter of 100 nm were synthesized by a simple hydrothermal route at $220^{\circ}C$ and then processed for a possible alternate cathode catalyst material in the lithium-oxygen batteries. It was found that when $TiO_2$ nanoparticles were utilized as cathodes, substantial improvements in the discharge capacity, cycle ability, rate capability and low overpotential were observed. This can be attributed to its high catalytic activity and large surface area.

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

Characterization Studies for the Selective Catalytic Oxidation of Ammonia Utilizing Ce/TiO2 Catalyst (Ce/TiO2 촉매를 이용한 암모니아의 선택적 산화반응 특성 연구)

  • Lee, Hyun Hee;Kim, Ki Wang;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.494-498
    • /
    • 2013
  • In this study, selective catalytic oxidation (SCO) of $NH_3$ using $Ce/TiO_2$ catalyst was examined to control the slipped NH3 from various pollutants. It was found that the catalytic activity increased with increasing the Ce loadings till reaching 10 wt% Ce loading. However, when Ce loaded over 10 wt%, the activity of catalysts rather decreased than that of catalysts, below 10 wt% Ce. Therefore, the composition of $Ce/TiO_2$ catalyst optimized in this study can be applied to industrial fields.

The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR (NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구)

  • Jung, Min Gie;Shin, Jung Hun;Lee, Yeon Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.516-523
    • /
    • 2021
  • A study using selective catalytic reduction (SCR) was conducted in conjunction with ammonia as a reducing agent for controlling nitrogen oxides, a typical secondary inducer of fine dust in the atmosphere. For NH3-SCR experiments, a commercial catalyst of V/W/TiO2 only and also V/W-Sb/TiO2 catalyst with Sb were used, and phosphorous durability was confirmed. As a result of NH3-SCR experiments, it was confirmed that the addition of Sb to V/W/TiO2 had durability against phosphorous. In addition, the physical and chemical properties were comparatively analyzed through BET, XPS, H2-TPR, NH3-TPD, and FT-IR analysis. From the anaylsis results, when Sb was added to V/W/TiO2 catalyst, P was also added resulting in the formation of SbPO4 and the generation of VOPO4 was suppressed. The phosphorous durability was confirmed by maintaining the redox characteristics of the catalyst before P was added.