• Title/Summary/Keyword: TiC layer thickness

Search Result 190, Processing Time 0.026 seconds

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

Effects of Lanthanides-Substitution on the Ferroelectric Properties of Bismuth Titanate Thin Films Prepared by MOCVD Process

  • Kim, Byong-Ho;Kang, Dong-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.688-692
    • /
    • 2006
  • Ferroelectric lanthanides-substituted $Bi_4Ti_3O_{12}$ $(Bi_{4-x}Ln_xTi_3O_{12}, BLnT)$ thin films approximately 200 nm in thickness were deposited by metal organic chemical vapor deposition onto Pt(111)/Ti/SiO$_2$/Si(100) substrates. Many researchers reported that the lanthanides substitution for Bi in the pseudo-perovskite layer caused the distortion of TiO$_6$ octahedron in the a-b plane accompanied with a shift of the octahedron along the a-axis. In this study, the effect of lanthanides (Ln=Pr, Eu, Gd, Dy)-substitution and crystallization temperature on their ferroelectric properties of bismuth titanate $(Bi_4Ti_3O_{12}, BIT)$ thin films were investigated. As BLnT thin films were substituted to lanthanide elements (Pr, Eu, Gd, Dy) with a smaller ionic radius, the remnant polarization (2P$_r$) values had a tendency to increase and made an exception of the Eu-substituted case because $Bi_{4-x}Eu_xTi_3O_{12}$ (BET) thin films had the smaller grain sizes than the others. In this study, we confirmed that better ferroelectric properties can be expected for films composed of larger grains in bismuth layered peroskite materials. The crystallinity of the thin films was improved and the average grain size increased as the crystallization temperature,increased from 600 to 720$^{\circ}C$. Moreover, the BLnT thin film capacitor is characterized by well-saturated polarization-electric field (P-E) curves with an increase in annealing temperature. The BLnT thin films exhibited no significant degradation of switching charge for at least up to $1.0\times10^{11}$ switching cycles at a frequency of 1 MHz. From these results, we can suggest that the BLnT thin films are the suitable dielectric materials for ferroelectric random access memory applications.

Microstructure Evolution and Dielectric Characteristics of CaCu3Ti4O12 Ceramics with Sn-Substitution

  • Kim, Cheong-Han;Oh, Kyung-Sik;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • The doping effect of Sn on the microstructure evolution and dielectric properties was studied in $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals. Samples were produced by a conventional solid-state reaction method. Sintering was carried out at $1115^{\circ}C$ for 2-16 h in air. The dielectric constant and loss were examined at room temperature over a frequency range between $10^2$ and $10^6$ Hz. The microstructure was found to evolve into three stages. Addition of $SnO_2$ led to an increase in density and advanced formation of abnormal grains. The formation of coarse grains with a reduced thickness of the boundary brought about an enhanced dielectric constant and a lower dielectric loss below ~1 kHz. EDS data showed the Cu-rich phase along the grain boundary, which should contribute to the improved dielectric constant according to the internal barrier layer capacitor model. After all, $SnO_2$ was an effective dopant to elevate the dielectric characteristics of $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals as a promoter for abnormal grain growth.

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II))

  • Kang Ji-Woong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Preparation Of Composite particles with planarized $SiO_2$ Particles (평탄면을 갖는 $SiO_2$미립자의 제조와 이를 이용한 $SiO_2/TiO_2$복합입자의 제조)

  • 신달식;김광수;이옥섭;이성호
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.37-54
    • /
    • 1999
  • Planarized SiO$_2$ particles were prepared by two-step reduction method of making much smaller particles, micron-sized ones, to improve spreadability, adherence, and smoothness. Various pigments known as flaky extender usually have terrace layers on their surfaces, but SiO$_2$ Particles in this study exhibit a smooth surface structure. These single SiO$_2$ particles were used for core particles to prepare the composite particles coated with ultra fine TiO$_2$ particles by a homogeneous precipitation method. The thickness and the morphology of the deposited TiO$_2$ layer could be altered by adjusting the reactant concentrations, reaction time and temperature. The characteristics of SiO$_2$/TiO$_2$composite in the field of color cosmetics is to give a UV-cut effect and to enhance the chroma of human skin color, one of optical properties.

  • PDF

Effect of HA Crystals Precipitated by Hydrothermal-Treatment on the Bioactivity of Ti-6Al-7Nb Alloy (열수처리에 의해 석출된 HA 결정이 Ti-6Al-7Nb 합금의 생체활성에 미치는 영향)

  • Kwon O. S.;Choi S. K.;Moon J. W.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.607-613
    • /
    • 2004
  • This study was to investigate the surface properties of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}$-glycerophosphate disodium salt hydrate($DL-{\alpha}$-GP) and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 2 hrs to produce a thin outermost layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. The size of micropores and the thickness of oxide film increased and complicated multilayer by increasing the spark forming voltage. Needle-like HA crystals were observed on anodic oxide film after the hydrothermal treatment at $300^{\circ}C$ for 2 hrs. When increasing $DL-{\alpha}$-GP in electrolyte composition, the precipitated HA crystals showed the shape of thick and shorter rod. However, when increasing CA, the more fine needle shape HA crystals were appeared. The bioactivity in Hanks' solution was accelerated when the oxide films composed with strong anatase peak with presence of rutile peak. The increase of amount of Ca and P was observed in groups having bioactivity in Hanks' solution. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal and it was closer to 1.67 as increasing the immersion time in Hanks' solution.

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

EFFECT OF CHEMICAL TREATMENT ON THE BIOACTIVITY OF TITANIUM (화학적 처리가 티타늄의 생체활성도에 미치는 영향)

  • Min Kwan-Sik;Lee Min-Ho;Ahn Seung-Geun;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.562-572
    • /
    • 2005
  • Statement of problem : Titanium is widely used as an implant material lot artificial teeth. Also, studies on surface treatment to form a fine passive film on the surface of commercial titanium or its alloys and improving bioactivity with bone have been carried out. However, there is insufficient data about the biocompatibility of the implant materials in the body. Purpose: The purpose of this study was to examine whether the precipitation of apatite on titanium metal is affected by surface modification. Materials and methods: Specimens chemically washed for 2 minute in a 1:1:1.5 (in vol%) mixture of 48% HF 60% $HNO_3$ and distilled water. Specimens were then chemically treated with a solution containing 97% $H_2SO_4$ and 30% $H_2O_2$ at $40^{\circ}C$S for 1 hour, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface were examined with TF-XRD, SEM, EDX and XPS. Also, commercial purity Ti specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. Conventional aluminium and stainless steel 316L were also implanted for comparison. Results and conclusions : The results obtained were summarized as follows. 1. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a $H_2SO_4$ and $H_2O_2$ solution. The average roughness was $2.175{\mu}m$ after chemical surface treatment. 2. The amorphous titania was subsequently transformed into anatase by heat treatment at $400^{\circ}C$ for 1 hour. 3. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $46.98{\mu}m$ in chemically-treated Ti, and 52.20, 168.65 and $100.95{\mu}m$ respectively in commercial pure Ti, aluminum and stainless steel 316L without any treatment.

The Hydrogen Reduction Kinetics of the Sintered Titanium Dioxide (이산화티탄 소결체의 수소환원 속도)

  • 석상일;이오상;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.167-171
    • /
    • 1999
  • Titanium dioxide bodies sintered at 130$0^{\circ}C$ for 10 h under the oxygen flowing were reduced with hydrogen in 1200, 1250 and 130$0^{\circ}C$ for 4~20 h. Reduction kinetics were evaluated by measuring a weight loss between before and after reduction, and the thickness of reduced layer, respectively. The reduction followed the parabolic rate law, indicating that the rate-determining process is diffusion. From the Arrhenius plots, the apparent activation energies for the reduction were obtained as 210$\pm$10 kJ/mol.

  • PDF

Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S.;Kim, J.M.;Kim, H.Y.;Perepezko, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.299-305
    • /
    • 2007
  • The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.