• Title/Summary/Keyword: TiAl alloy

Search Result 649, Processing Time 0.022 seconds

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V Using Tungsten Carbide Tool (초경공구를 사용한 Ti-6A1-4V 타이타늄 합금이 절삭가공시 공구마멸과 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everybody's commercial applications such as golf heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6A1-4V alloy due to their dominant position in the production of titanium alloys.

Grindability of Ti-Xwt%Cu Alloys for Dental Applications (치과용 Ti-Xwt%Cu 합금의 연삭성)

  • Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.

A study of mechanical properties and development of intelligent composite using TiNiCo shape memory alloy (TiNiCo 형상기억복합재료의 기계적특성에 관한 연구)

  • 박영철;한근조;박동성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.465-469
    • /
    • 1997
  • In this paper, shape memory compsites are made by powder metallurgy. And then, an self-strengthening effect of the composites by shape memory effect above inverse transformation temperature A/sab f/ of TiNi alloy discussed. Moreover, TiNiCo/Al composite is made by using TiNiCo alloy as fiber. And it is discused aboutaffection of Co in the shape memory composite. The results of the intelligent properties of TiNi/Ai-radical shape memory composite, using SMA, by powder metallurgy are the tensile strength of TiNiCo wire is much higher than that of TiNi wire. and the strength of TiNiCo/Al composite is generally higher than that TiNi/Al composite.

  • PDF

A Numerical Analysis for Plastic Deformation of a Ti Alloy and a study for Shear Band Analysis (Ti 합금 형단조에서의 소성 해석 및 전단 밴드 분석)

  • 윤수진;손영일;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • This study summarizes the numerical analyses of a Ti alloy deformation under a back extrusion process. Amongst metallic parts in a small propulsion motor case, a Ti-6Al-4V alloy is used extensively. However, the Ti alloy shows a great deal of shear band formation which often leads to a fracture due to a narrow working temperature window. Moreover, the shear band tends to develop over an area where a contact occurs between the hot work piece and the die wall, due to localized cooling. Thus, heating the dies is often required to overcome the deformation localization. Therefore, it becomes necessary to investigate the internal temperature and strain rate distribution during forging process of a Ti alloy. Furthermore, a shear band analysis is peformed using a finite difference scheme and a comparison is made between steel and Ti alloy.

  • PDF

EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY (전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향)

  • Jang Tae-Yeob;Song Kwang-Yeob;Bae Tae-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.684-693
    • /
    • 2005
  • Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

The Effect of Microstructure on the Static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 미세조직에 따른 정적 및 동적 변형에 관한 연구)

  • Lee D. G.;Lee Y. H.;Lee S. H.;Hur S. M.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.277-280
    • /
    • 2001
  • The effects of a -phase morphology on the static and dynamic deformation behavior of a Ti-6Al-4V alloy was investigated in this study. Static tension test, static and dynamic tension test and hot compression test were conducted on three microstructures of Ti-6Al-4V alloy, i.e., equiaxed, widmanstatten and bimodal microstructures. Fracture surfaces of all three microstructures represented ductile fracture appearance, though the formation of adiabatic shear bands was noticed at dynamic torsion test. The susceptibility of forming adiabatic shear bands was greatest in the equiaxed microsoucture and lowest in the bimodal microstructure, which was evidenced by hot compression test.

  • PDF

Prediction of microstructure during high temperature forming of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 고온성형 시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • The purpose of this study is to investigate the high temperature deformation behavior of Ti-6Al-4V alloy and to predict the final microstructure under given forming conditions. Equiaxed and widmanstatten of Ti-6Al-4V alloys were prepared as initial microstructure and the compression tests were performed to obtain the flow curves at high temperatures (700∼1100$^{\circ}C$) and various strain rates (10$\^$-4/∼10$^2$/s). Form the results of compression test various parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural parameters such as the grain size and the volume fraction of second phase.

  • PDF

Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 고온성형시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;박노광;심인옥;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.290-295
    • /
    • 2003
  • High temperature deformation behavior and prediction of final microstructure after forming of Ti-6Al-4V alloy were investigated in this study. Equiaxed and Widmanstatten microstructures of Ti-6Al-4V alloys were prepared as initial microstructures and compression tests were performed to obtain the flow curves at high temperatures (700∼110$0^{\circ}C$) and various strain rates (10$^{-4}$ ∼10$^2$/s). From the results of compression test, strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equation. To predict the final microstructure after farming, finite element analysis was performed considering the microstructural parameters such as grain size and volume fraction of second phase.