• Title/Summary/Keyword: Ti-diffusion

Search Result 502, Processing Time 0.029 seconds

Pigtailing and Guiding Experiments of Single and 1$^\circ$ Y-branch Ti:LiNbO$_3$ Mach-Zehnder Inteferometric Optical Waveguide for fabricating an Optical Phase Modulator (광위상변조기 제작용 Single Channel 및 1$^\circ$ Y-branch Mach-Zehnder간섭기형 Ti:LiNbO$_3$ 도파로 Pigtailing 및 도파실험)

  • Kim, Seong-Ku;Jung, Won-Jo;Cho, Jae-Cheol;Park, Kye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.101-104
    • /
    • 1998
  • We report some methods for measuring a LiNbO$_3$ optical phase modulator bandwidth. Since Mach-Zehnder waveguide type, one of methods for modulation bandwidth measurement, is comparatively simple and useful, it was adapted in this work. In order to confirm this method, the waveguide of single and Mach-Zehnder type were fabricated on the same wafer. The Mach-Zehnder interferometric waveguide and the single channel waveguide were used for the measurement of the phase modulator's driving voltage and bandwidth for device fabrications, respectively. Ti-860$\AA$ in-diffusion was achieved in a wet-bubbling oxygen environment at 105$0^{\circ}C$/8hours. LINbO$_3$ internal chips were pigtailed to PMF(polarization maintaining fiber)/SMF(single mode fiber) using an epoxy curing technique. Examined were optical properties such as an insertion loss, propagation loss and mode size, and the loss mechanism of optical coupling between an optical fiber and a waveguide was considered.

  • PDF

Effects of Remanent Polarization State and Internal Field in Ferroelctric Film on the Hydrogen-induced Degradation Characteristics in Pt/Pb(Zr, Ti)O3/Pt Capacitor (강유전막의 잔류 분극 상태와 내부 전계가 Pt/Pb(Zr,Ti)O3/Pt 커패시터의 수소 열화 특성에 미치는 영향)

  • Kim, Dong-Cheon;Lee, Gang-Un;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2002
  • The ferroelectric properties of Pb(Zr,Ti)O$_3$[PZT] films degrade when the films with Pt top electrodes are annealed in hydrogen containing environment. This is due to the reduction activity of atomic hydrogen that is generated by the catalytic activity of the Pt top electrode. At the initial stage of hydrogen annealing, oxygen vacancies are formed by the reduction activity of hydrogen mainly at the vicinity of top Pt/PZT interface, resulting in a shift of P-E (polarization-electric field) hysteresis curve toward the negative electric field direction. As the hydrogen annealing time increases, oxygen vacancies are formed inside the PZT film by the inward diffusion of hydrogen ions, as a result, the polarization degrades significantly and the degree of P-E curve shift decreases gradually. The direction and the magnitude of the remnant polarization in the PZT film affect the motion of hydrogen ions which determines the degradation of polarization characteristics and the shift in the P-E hysteresis curve of the PZT capacitor during hydrogen annealing. When the remnant polarization is formed in the PZT film by applying a pre-poling voltage prior to hydrogen annealing, the direction of the P-E curve shift induced by hydrogen annealing is opposite to the polarity of the pre-poling voltage. The hydrogen-induced degradation behavior of the PZT capacitor is also affected by the internal field that has been generated in the PZT film by the charges located at the top interface prior to hydrogen annealing.

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

Annealing Effect of Surface Magnetic Properties in CoTi Thin Films (열처리 효과가 CoTi계 박막의 표면자기특성에 미치는 영향)

  • 김약연;백종성;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 1997
  • For amorphous $Co_{1-x}Ti_x$(X=0.13, 0.16, 0.21 at.%) thin films deposited by DC magnetron sputtering method ferromagnetic resonance experiments have been used to investigate the dependence of surface magnetic properties according to annealing temperature (150~225 $^{\circ}C$). Spin wave resonance spectra for all annealing temperatures consist of several volume modes and one(or two) surface mode. It is suggested that both surfaces of the film have a perpendicular hard axis to the film plane(negative surface anisotropy). Also, the surface anisotropy $K_{s2}$ at substrate film interface is varied slowly from -0.11 to -0.25 erg/ $\textrm{cm}^2$ and the surface anisotropy $K_{s1}$ at film-air interface is varied from 0.16 to -0.53 erg/ $\textrm{cm}^2$ with increasing annealing temperature. We conjecture that the variation of surface anisotropy $K_{s1}$ is due to the increase of Co concentration resulted from Ti oxidation for low temperature annealing(150~200 $^{\circ}C$) and the diffusion of Co atoms near the film surfaces for high temperature annealing(225~250 $^{\circ}C$).

  • PDF

A study on the fabrication of $Pb(Fe^{0.5},Nb^{0.5}O_3$ thin films by a Co-sputtering technique and their characteristics properties (동시 스퍼터링법에 의한$Pb(Fe^{0.5},Nb^{0.5}O_3$박막의 제조 및 특성 평가에 대한 연구)

  • 이상욱;신동석;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • $Pb(Fe_{0.5}Nb_{0.5}O_3(PFN)$ thin films were prepared by rf magnetron co-sputtering method on $SiO_2/Si$, ITO/glass, and $Pt/Ti/SiO_2/Si$ substrates and post-annealed at the $N_2$ atmosphere by RTA(rapid thermal annerling). The degree of crystallinity of PFN films was identified on various substrates. Electrical properties of PFN films was characterized for $Pt/PFN/Pt/Ti/SiO_2/Si$ structure. The composition of PFN films was estimated by EPMA (electron probe micro analysis). PFN films would be crystallized better to perovskite phase on ITO/glass substrate than $SiO_2/Si$ substrate. This may be induced by the deformation of Pb deficient pyrochlore phase due to Pb diffusion into $SiO_2/Si$ substrate. PFN films on $Pt/Ti/SiO_2/Si$ substrate. PFN films with 5-10% Pb excess were crystallized to perovskite phase from $500^{\circ}C$ temperature. In summary, we show that Pb composition and annealing temperature were critically influenced on crystallinity to perovskite phase. When PFN film with 17% Pb excess was annealed at $600^{\circ}C$ at the $N_2$ atmosphere for 300kV/cm and 88. Its remnant polarization coercive field $2.0 MC/cm^2$ and 144kV/cm, respectively.

  • PDF

The Effect of Solidification Rate on Solidification Behavior in IN792+Hf Superalloy (IN792+Hf 초내열합금의 응고거동에 미치는 응고속도의 영향)

  • Bae, Jae-Sik;Kim, Hyeon-Cheol;Lee, Jae-Hyeon;Yu, Yeong-Su;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.502-507
    • /
    • 2001
  • The effect of solidification rate on the microstructure of directionally solidified IN792+ Hf superalloy has been studied. Solidification sequence and precipitation behavior of the alloy have been analysed by microstructural observation. The script carbide transformed to faceted carbide with decreasing solidification rates. The incorporation of ${\gamma}$ phase into the faceted carbide was due to dendritic growth of carbides. Some elongated carbide bars formed along the grain boundaries at a solidification rate of 0.5$\mu\textrm{m}$/s. Two zones, ${\gamma}$' forming elements enriched zone and depleted zone, were found in the residual liquid area. Eutectic ${\gamma}$/${\gamma}$' nucleated in the f forming elements enriched zone. Formation of eutectic ${\gamma}$/${\gamma}$' increased the ratio of (Ti+Hf+Ta+W)/Al and induced η phase precipitation. The ratio of (Ti+Hf+Ta+W)/Al decreased at lower solidification rates due to sufficient back diffusion in the residual liquid area. Hence, the Precipitation of the η Phase efficiently suppressed at the lower solidification rate.

  • PDF

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

고효율 저가형 결정질 실리콘 태양전지에 적용될 Ni/Cu 전극 및 Ni silicide 형성에 대한 연구

  • Kim, Min-Jeong;Lee, Su-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.260-260
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cell, If high-efficiency solar cells are to be commercialized, It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper are applied widely in various electronic manufactures as easily formation is available by plating. Ni is shown to be a suitable barrier to Cu diffusin as well as desirable contact metal to silicon. Nickel monosilicide has been suggested as a suitable silicide due to its lower resistivitym lower sintering temperature and lower layer stress than $TiSi_2$. In this paper, Nickel as a seed layer and diffusion barrier is plated by electroless plating to make nickel monosilicide.

  • PDF

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

A Study on the Characteristic of Dye-sensitized Solar Cell by Controlling the Roughness Factor of Counter Electrode (염료감응형 태양전지의 상대전극 Roughness Factor 조절을 통한 셀 특성 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Kim, Jeong-Hoon;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.428-430
    • /
    • 2008
  • Dye-sensitized solar cell has many internal resistant components such as Pt counter electrode, $TiO_2$/dye/electrolyte, charge diffusion, sheet resistance of TCO. Among these, the resistance about the counter electrode can be reduced by increasing the roughness factor of Pt counter electrode. This causes the increase of fill factor and improvement of efficiency. And the amount of light reflection on the counter electrode also increases as the roughness factor goes up. In our experiment, we suggest a new deposition structure of Pt thin film that is a stepped-type structure. The more step lines are in the counter electrode, the more roughness factor is. As a result, we get the improvement of fill factor and efficiency by controlling the roughness factor of counter electrode.

  • PDF