• Title/Summary/Keyword: Ti-Alloy

Search Result 1,329, Processing Time 0.022 seconds

Coating of two kinds of bioactive glass on Ti6Al4V alloy (Ti6Al4V 합금에 두 종류의 생체활성화 유리 코팅)

  • Kang, Eun-Tae;Lee, Nam-Young;Choi, Hyun-Bin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.206-210
    • /
    • 2018
  • Two kinds of bioactive glass were coated on the Ti6Al4V alloy by the enameling technique. In order to reduce the thermal stress due to the difference in expansion coefficient with the alloy with the secondary coating forming hydroxyapatite, the difference in expansion coefficient between the alloy and the two glasses was adjusted at $2{\times}10^{-6}/^{\circ}C$ intervals. FE-SEM and EDS analysis showed that good adhesion was formed between the Ti6Al4V alloy and the primary coating by diffusion bonding. After immersion in SBF solution, it was confirmed from FT-IR that hydroxycarbonate apatite formed in the secondary coating was not different from bulk bioactive glass.

Corrosion Characteristics of Cell-Covered Ternary Ti-Nb-Ta Alloy for Biomaterials

  • Kim, W.G.;Yu, J.W.;Choe, H.C.;Ko, Y.M.;Park, G.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.62-67
    • /
    • 2009
  • Ti and Ti-alloys have good biocompatibility, appropriate mechanical properties and excellent corrosion resistance. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus (100 GPa) than cortical bone (20 GPa). Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. The electrochemical behavior of surface-modified and MC3T3-E1 cell-cultured Ti-30(Nb,Ta) alloys with low elastic modulus have been investigated using various electrochemical methods. Surfaces of test samples were treated as follows: $0.3{\mu}m$ polished; $25{\mu}m$, $50{\mu}m$ and $125{\mu}m$ sandblasted. Specimen surfaces were cultured with MC3T3-E1 cells for 2 days. Average surface roughness ($R_a$) and morphology of specimens were determined using a surface profilometer, OM, and FE-SEM. Corrosion behavior was investigated using a potentiostat(EG&G PARSTAT 2273), and electrochemical impedance spectroscopy was performed (10 mHz to 100 kHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructures of the Ti-30(Ta,Nb) alloys had a needle-like appearance. The $R_a$ of polished Ti-30Ta and Ti-30Nb alloys was lower than that of the sandblasted Ti alloy. Cultured cells displayed round shapes. For polished alloy samples, cells were well-cultured on all surfaces compared to sandblasted alloy samples. In sandblasted and cell-cultured Ti-30(Nb,Ta) alloy, the pitting potential decreased and passive current density increased as $R_a$ increased. Anodic polarization curves of cell-cultured Ti alloys showed unstable behavior in the passive region compared to non-cell-cultured alloys. From impedance tests of sandblasted and cell-cultured alloys, the polarization resistance decreased as $R_a$ increased, whereas, $R_a$ for cell-cultured Ti alloys increased compared to non-cell-cultured Ti alloys.

Influence of Sr and TiB on the Microstructure and Eutectic Temperature of Al-12Si Die-Cast Alloys (Sr과 TiB 첨가에 따른 다이캐스팅용 Al-Si 합금의 미세조직과 공정온도의 변화)

  • Choi, Yong-Lak;Kim, Seon-Hwa;Kim, Dong-Hyun;Yoon, Sang-Il;Kim, Ki-Sun
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2017
  • In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at $660^{\circ}C$. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to $9^{\circ}C$ and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary ${\alpha}$-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.

Improvement of Microstructural and Mechanical Properties of Ti-6Al-4V Alloy by Plasma Carburization (Ti-6Al-4V 합금의 미세조직 및 기계적 특성에 미치는 Plasma 침탄 처리의 영향)

  • Park, Yong-Gwon;Kim, Taek-Su;Ji, Tae-Gu;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.341-346
    • /
    • 2002
  • In order to improve the low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical property test. The plasma treated alloy formed a carburized layer of about 150$\mu\textrm{m}$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. It was also found that an increase of the wear resistance, fatigue life and hardness, due to the hard and fine dispersoids.

Effect of V additions on the thermal stability of mechanically alloyed AI-alloys (기계 합금화한 AI-Ti합금의 열적 안정성에 미치는 V첨가의 영향)

  • O, Jun-Yeong;Park, Chi-Seung;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.483-490
    • /
    • 1994
  • The effect of vanadium additions on the thermal stability of Al-TI alloy \vas investigated. Al- 8wt.%Ti and Al-8wt.%(Ti+V) alloys wirh different Ti to V atomic ratios of 3 : 1 and 1 : 1 were pre- pared by mechanical alloying. The steady states wwe obtalncd after mechanical alloy~ng for ltihours for all the alloy compositions. The mechanically alloyed powders were consolidaicd by vacuum hot pressing and thermal st.ability was investigated by hardness testing afrcr aging thc specimens at $400^{\circ}C$, $480^{\circ}C$, $550^{\circ}C$ for up to 1000hrs. It was confirmed that addit~on of V- increased the thermal stability of Al-Ti alloy by reducing coarsening rate of $Ai_{3}Ti$ intermetallic compound.

  • PDF

Effects of Cr, B, Ti and Si on Rolling Characteristics in Fe-30at.%A1 Alloy (Fe-30at.%A1 합금의 압연성에 미치는 Cr, B, Ti 및 Si 첨가효과)

  • Choi, Dap-Chun;Lee, Ji-Sung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.77-85
    • /
    • 2003
  • Some alloying elements such as Cr, B, Ti and Si were added individually or as a mixture to Fe-30 at.%Al alloys. The alloys were melted using an arc furnace and then heat-treated for homogenization at 1000$^{\circ}C$ for 7 days and followed by rolling at 1000$^{\circ}C$. The alloying elements on rolling characteristics were investigated by the microstructures and fracture mode before and after rolling. The microstructures before rolling showed that all of the alloys had equiaxed grains. On the other hand, the microstructures of rolling plane as well as its perpendicular plane became elongated after rolling. The alloys such as Fe-30Al, Fe-30Al-3Ti, Fe-30Al-0.5B, Fe-30Al-5Cr and Fe-30Al-3Ti-0.5B revealed better rolling behaviour from the point that intergranular and cleavage fractures were not fundamentally occurred. But the addition of 5Ti or 3Si to Fe-Al alloys had detrimental effects. The Ti-added alloy system such as Fe-30Al-5Ti, Fe-30Al-5Ti-5Cr, Fe-30Al-3Ti-5Cr and Fe-30Al-5Ti-0.5B were cracked through grain and showed cleavage fracture. The Si-added alloy system such as Fe-30Al-5Si, Fe-27Al-3Si and Fe-27Al-5Cr-3Si were cracked along the grain boundary and showed intergranular fracture. $DO_3{\leftrightarrow}B_2$ transition temperature of Fe-30at.%Al alloy was 520$^{\circ}C$, whereas the addition of 3Ti and 3Ti+0.5B comparably increased the temperature to 797 and 773$^{\circ}C$, respectively.

A Study on the Precipitation Behavior of $Al_2Ti$ Phase in $L1_0$-TiAl and $L1_2-(Al,Cr)_3Ti$ ($L1_0$-TiAl 및 $L1_2-(Al,Cr)_3Ti$ 중에 $Al_2Ti$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Structural studies have been performed on precipitation hardening and microstructural variations found in Ti-Al-Cr ternary $L1_0$- and $L1_2$-phase alloys using transmission electron microscopy. Both the $L1_0$ and $L1_2$ phase alloys harden by aging at 973 K after solution annealing at higher temperatures. The amount of age hardening of the $L1_2$ phase alloy is larger than that of the $L1_0$ phase alloy. The phase separation between $L1_0$ and $L1_2$ phase have not been observed by aging at 973 K. But $Al_2Ti$ was formed in each matrix alloy during aging. The crystal structure of the $Al_2Ti$ phase is a $Ga_2Zr$ type in the $L1_0$ and a $Ga_2Hf$ type in the $L1_2$ phase, respectively. At the beginning of aging the fine coherent cuboidal $Al_2Ti$-phase are formed in the $L1_0$ phase. By further aging, two variants of $Al_2Ti$ precipitates grow along the two {110} habit planes. On the other hand, in the $L1_2$ phase, the $Al_2Ti$ phase forms on the {100} planes of the $L1_2$ matrix lattice. After prolonged aging the precipitates are rearranged along a preferential direction of the matrix lattice and form a domain consisting of only one variant. It is suggested that the precipitation of $Al_2Ti$ in each matrix alloy occurs to form a morphology which efficiently relaxes the elastic strain between precipitate and matrix lattices.

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal (삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성)

  • Park, Sung-Hyun;Kim, Ki-Young;Park, Jong-Moon;Choi, In-Chul;Ito, Kazuhiro;Oh, Myung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

Machinability Evaluation of Hybrid Ti2 Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation (전도성을 가지는 하이브리드 Ti2AlN 세라믹 복합체의 마이크로 방전드릴링에서 가공성 평가)

  • Heo, Jae-Young;Jeong, Young-Keun;Kang, Myung-Chang;Busnaina, Ahmed
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.285-290
    • /
    • 2013
  • $Ti_2AlN$ composites are a laminated compounds that posses unique combination of typical ceramic properties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystallization of the $Ti_2AlN$ phase are observed. The electrical and thermal conductivity of $Ti_2AlN$ is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for $Ti_2AlN$ composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid $Ti_2AlN$ ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.

Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys (Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF