• Title/Summary/Keyword: Ti-6Al-4V alloy

Search Result 315, Processing Time 0.031 seconds

Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment

  • Yi, Hui-Jun;Kim, Jin-Woo;Kim, Young-Lak;Shin, Sangyong
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.245-254
    • /
    • 2021
  • Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

The Evaluation of Mechanical properties on the Changes of Microstructure for Titanium Alloy (Ti-6Al-4V) (티타늄 합금(Ti-6Al-4V)의 조직변화에 따른 기계적 특성 평가)

  • Kwon, Jae-Do;Bae, Yong-Tak;Choi, Sung-Jong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • The characteristics of mechanical behavior were estimated for Ti-6Al-4V alloy with four kinds of microstructure prepared with heat treatments. For this study, impact test, tensile test and fatigue crack growth test were performed, and then compared mechanical properties on the four microstructures. Furthermore, for quantitative evaluation, fractal dimensions of crack pass were obtained using the box counting method. The main results obtained are summarized as follows. (1) The microstructures exhibited equiaxed microstructure, bimodal-microstructure and lamellar microstructure by heat treatment. (2) The impact absorbed energy and elongation is superior in the bimodal-microstructure, and the hardness and tensile strength are superior in the lamellar microstructure. (3) The fatigue crack growth rate is similar to all microstructures in the low ${\Delta}K$ region. The fatigue crack growth rate of equiaxed microstructure is fastest, and that of lamellar microstructure is lowest in the high ${\Delta}K$ region. (4) The fractal dimension D of lamellar microstructure is higher then that of the equiaxed microstructure and bimodal microstructure.

  • PDF

TiN Surface-Alloying of Ti-6Al-4V Alloy by CO2 Laser (CO2 레이저에 의한 Ti-6Al-4V 합금(合金)의 TiN 표면합금화(表面合金化))

  • Park, S.D.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ti-6Al-4V alloy are widely used in chemical and aircraft industries for their good corrosion resistance and high strength to weight ratio. Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN surface-alloyed layer with high hardness on the substrate very simplely by injecting reaction gas($N_2$) into a laser-generated melt pool and adjust the hardness to the specific requirements of the individual application by changing of laser processing parameters. This research has been investigated the effect of such parameters on TiN surface-alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum hardness of TiN surface-alloyed zone waw obtained by injecting 100% $N_2$ gas and it was decreased as the amount of $N_2$ gas in Ar and $N_2$ gas mixture was decreased. As scanning speed was increased, the hardness and depth of TiN surface-alloyed zone was decreased at constant laser power. The surface hardness after double scanning laser treatment is higher than that of single scanning. At constant laser power, the surface roughness is increased after the surface alloying if laser scanning speed is decreased.

  • PDF

Electrochemical Characteristics of HA Film on the Ti Alloy Using Pulsed Laser Deposition

  • Jeong, Yong-Hoon;Shin, Seung-Pyo;Chung, Chae-Heon;Kim, Sang-Sub;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • In this study, we have investigated the surface morphology of hydroxyapatite (HA) coated Ti alloy surface using pulsed laser plating. The HA (tooth ash) films were grown by pulsed KrF excimer laser, film surfaces were analyzed for topology, chemical composition, crystal structure and electrochemical behavior. The Ti-6Al-4V alloy showed ${\alpha}$ and ${\beta}$ phase, Cp-Ti showed ${\alpha}$ phase and the HA coated surface showed HA and Ti alloy peaks. The HA coating layer was formed with $1-2{\mu}m$ droplets and grain-like particles, particles which were smaller than the HA target particle, and the composition of the HA coatings were composed of Ca and P. From the electrochemical test, the pitting potential (1580 mV) of HA coated Ti-6Al-4V alloy was higher than those of Cp-Ti (1060 mV) and HA coated Cp-Ti (1350 mV). The HA coated samples showed a lower current density than non-HA coated samples, whereas, the polarization resistance of HA coated samples showed a high value compared to non-HA coated samples.

A Study on the Cutting Characteristics of Ti-6Al-4V Alloy in Turning Operation (선삭가공시 Ti-6Al-4V 합금의 절삭특성에 관한 연구)

  • Park, Jong-Nam;Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.81-87
    • /
    • 2004
  • The titanium has many superior characteristics such as specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. This study performed turning operation of Ti-6Al-4V alloy using the TiAlN coated tool which was treated with PVD. Experimental works were also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study, tool wear was serious at the condition over 100m/min of cutting speed. The excellent cutting condition of cutting depth was at 1.0mm.

  • PDF

EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY (전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향)

  • Jang Tae-Yeob;Song Kwang-Yeob;Bae Tae-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.684-693
    • /
    • 2005
  • Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

Grindability of Ti-Xwt%Cu Alloys for Dental Applications (치과용 Ti-Xwt%Cu 합금의 연삭성)

  • Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

A Study on the Chip Treatment of Ti-6Al-4V Alloy in Turning processing (Ti-6Al-4V 합금의 선삭가공시 칩처리성에 관한 연구)

  • Park J.N.;Lee S.C.;Cho G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1551-1554
    • /
    • 2005
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF