• Title/Summary/Keyword: Ti substrate

Search Result 1,385, Processing Time 0.026 seconds

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

Electrical and Optical properties of TiO2-doped ZnO Films prepared on PEN by RF-magnetron Sputtering Method (고주파 마그네트론 스퍼터링에 의해 성막된 TiO2가 도핑된 ZnO 박막의 전기적 및 광학적 특성)

  • Kim, Hwa-Min;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.837-843
    • /
    • 2009
  • $TiO_2$(2 wt.%)-doped ZnO(TZO) films with thickness from 100 nm to 500 nm were prepared on polyethylene naphthalate(PEN) substrate under various rf-power range from 40 W to 80 W. Their electrical and optical properties were investigated as a function of rf-power. We think that these properties were closely related with the crystallization and the film density of TZO films. It was also presumed that the vaporization of the water vapor and other adsorbed particles such as an organic solvents can affect the electrical properties of the conventional transparent conductive oxide(TCO) films. On the other hand, since the TZO film deposited on glass substrate at room temperature with rf-power of 80 W shows a very low resistivity of $7.5\times10^{-4}\;\Omega{\cdot}cm$ and a very excellent transmittance over an average 85% in the visible range, that is comparable to that of ITO films. Therefore, we expect that the TZO films can be used as transparent electrode for optoelectronic devices such as touch-panels, flat-panel displays, and thin-film solar cells.

Evaluation of Plasma Spray Hydroxy Apatite coatings on Metallic Materials

  • Take, S.;Mitsui, K.;Kasahara, M.;Sawai, R.;Izawa, S.;Nakayama, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.286-290
    • /
    • 2007
  • Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resisitance of SUS316L based HAp/Ti conbined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer.

Ti02/CNT Hybrid Nanofiber Electrode for Energy Conversion Devices (에너지 전환 소자용 $TiO_{2}/CNT$ 하이브리드 나노 섬유 전극)

  • Seo, Jae-Sub;Kim, Joo-Yong;Jin, Hyoung-Joon;Kang, Min-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.323-325
    • /
    • 2007
  • $TiO_{2}$ electrode electrospun directly onto the substrate was developed for energy conversion device. To enhance energy conversion efficiency of dye-sensitized solar cell, electrodes should have higher surface area to absorb more dyes and higher conductivity to reduce recombination of generated electrons. $TiO_{2}$ nanofibers with higher surface areas were fabricated by annealing electrospun $TiO_{2}/PVP$ nanofibers at $500^{\circ}C$ for 3 hrs in air. it was revealed that $TiO_{2}$ nanofiber electrodes is hybrid with MWNT showed higher conductivity than $TiO_{2}$ semiconductor electrode possibly due to band gap change.

  • PDF

Effects of Implanted $BF_2$ on the Formation of Ti-Silicides (Si 기판에 주입된 $BF_2$ 불순물이 Ti silieides 형성에 미치는 영향)

  • 최석훈;최진석;백수현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1852-1858
    • /
    • 1990
  • The sheet resistance and thickness of Ti-Silicides treated RTA at 600, 700, 800\ulcorner was measured with amount of BF2 implanted in Si substrate. And the profile of BF2 was studied by SIMS. The formation of TiSi2 starts at 700\ulcorner. The Ti-Silicides almost consist of TiSi2 and have a low resistivity about 16列 cm at 800\ulcorner. The sheet resistances of Ti-silicides increase and thicknesses of it decrease with increasing dose of BF2. Considering the results of SIMS and the thickness of native oxide, the decrease of thickness of Silicides chiefly results from the increase of native oxide thickness with increasing dopants.

  • PDF

Electrical Properties of $PbTiO_3$ Thin Films Fabricated by CVD (화학증착법에 의해 제조된 $PbTiO_3$ 박막의 전기적 특성에 관한 연구)

  • Yoon, Soon-Gil;Kim, Ho-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.329-332
    • /
    • 1989
  • Lead titanate thin films were deposited on titanium substrates by a chemical vapour deposition(CVD) process involving the application of vapour mixtures of Pb, ethyl titanate( Ti($C_2H_5O_4$)), and oxygen. The lead titanate having a stoichiometric composition has a dc conductivity of $3.2{\times}10^{-12}{\Omega}^{-1}{\cdot}cm^{-1}$ at room temperature. The nonsaturating loops observed in present investigation may be attributed to the $TiO_2$ and TiO layers between the conductive substrate and the $PbTiO_3$ ferroelectric film. The ferroelectric properties of the stoichiometric $PbTiO_3$ film included a remanent polarization of 14.1 ${\mu}C/cm^2$ and a coercive field of 20.16 kV/cm.

  • PDF

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

Optical Reactivity Modification of Titanium Oxide coatings on Ceramic filters by Nitrogen ion Implantation

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.90-90
    • /
    • 2010
  • We investigated the modification of optical response properties of titanium dioxide (TiO2) coatings on the ceramic water-purification filters by using ultraviolet-visible absorption spectroscopy and X-ray diffraction. The TiO2 coatings were prepared on ceramic substrate by e-beam evaporation method. These amorphous TiO2 were turned into anatase phase by heat treatment at $700^{\circ}C$ for 2 hours. The doping of N atoms into the TiO2 coatings was done by using 70KeV of N+ ion implantation with the dose of $1.0{\times}1017$ ions/cm2, followed by post-irradiation heat treatment at $550^{\circ}C$ for 2 hours. Methylene blue test of TiO2 coatings to solar irradiation showed that the post-evaporation heated TiO2 was photocatalytic and N-doped TiO2 reacted to the visible part of solar irradiation.

  • PDF

Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition (원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성)

  • Lee, U-Jae;Kim, Tae-Hyeon;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

A Study on Wear Resistance of TiN Films Prepared by Arc Vapor Ion Deposition Process (Arc Vapor Ion Deposition 법으로 제조된 TiN 피막의 내마모성에 관한 연구)

  • 신현식;한전건;장현구;고광진
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.1
    • /
    • pp.36-44
    • /
    • 1994
  • The TiN films were deposited on the stainless substrates using arc vapor ion deposition process to in-vestigated the wear resistance. Pin-on-disc tests were performed to measure the volume wear loss of TiN films. The substrate bias voltages and nitrogen flow rates were selected as the deposition parameters of TiN films. It was found that the wear resistance of TiN films was enhanced with increasing bias voltages(0~-300 V) and nitrogen flow rates(220~380 SCCM). The volume wear loss TiN films were about 9.5~2.1$\times$$10^{-3}mm^3$ and 3.5~2.2$\times$$10^{-3}mm^3$ with bias voltages and nitrogen flow rates, respectively.

  • PDF