• Title/Summary/Keyword: Ti Diffusion Heat Treatment

Search Result 48, Processing Time 0.03 seconds

Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials (Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향)

  • Bae, Dong-Hyun;Jung, Su-Jung;Cho, Young-Rae;Jung, Won-Sup;Jung, Ho-Shin;Kang, Chang-Yong;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

Optimal Post Heat-treatment Conditions for Improving Bonding Strength of Roll-bonded 3-ply Ti/Al/Ti Sheets (롤 본딩된 Ti/Al/Ti 3-ply 다층금속 판재의 접합강도 향상을 위한 최적 후열처리 조건 도출)

  • Kim, M.H.;Bong, H.J.;Kim, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.179-185
    • /
    • 2022
  • The influence of post-roll bonding heat treatment conditions such as temperature and time on the variation in the diffusion layer, generated at the bonding interface and the subsequent mechanical properties of the roll-bonded Ti grade 1/Al1050/Ti grade 1 sheets, was systematically investigated. The intermetallic compound (IMC) phase generated by post heat treatment conditions adopted in this study was obviously indexed as monolithic TiAl3. Whereas the thickness of IMC layer generated by annealing at 500 ℃ was approximately 100 nm scale, it drastically increased above 1.5 ㎛ when annealed at 600 ℃. Uniaxial tensile and peel tests were then performed to compare mechanical properties. As a result, the bonding strength drastically increased above 7.9 N/mm by annealing at 600 ℃, which implies that proper annealing condition was a prerequisite, to improving interface bonding strength as well as global elongation properties for Ti/Al/Ti 3-ply sheet.

The Effect of Titanium Interlayer on the Adhesion Properties of TiN Coating (Titanium Interlayer가 TiN 박막의 밀착특성에 미치는 영향)

  • Kong, S.H.;Kim, H.W.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1992
  • In order to improve adhesive force of TiN film, we sputtered titanium as interlayer before TiN deposition by Plasma Enhanced Chemical Vapour Deposition. We observed changes of hardness and adhesion at a various thickness of titanium interlayer and also examined analysis. At the critical thickness of the titanium interlayer(about $0.2{\mu}$), adhesive force of TiN films were promoted mostly. But over the critical thickness, a marked reduction of adhesive force was showed, because of the internal stress of titanium interlayer. From AES analysis, the adhesion improvement of TiN films was mainly caused by nitrogen diffusion into titanium interlayer during TiN deposition process which relieved stress concentration at TiN coating-substrate interface.

  • PDF

Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II) (직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II))

  • Cho, Young-Soo;Lee, Young-Ki;Sohn, Yong-Un;Park, Kyong-Ho;Kim, Seok-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy (IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

Effect of VC Addition on the Microstructural Evolution of Fe-TiC Cermet (VC의 첨가에 따른 Fe-TiC계의 미세조직변화)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.366-371
    • /
    • 1999
  • The effect of VC addition on the microstructural evolution of Fe-TiC cermet has been investigated. The microstructures of the Fe-TiC varied with the amount of VC addition. The addition of 1wt% VC enhanced the instability of liquid-solid interface ; the dissolving interface showed round shape instead of facetted one which was ascribed to the increase of lattice mismatch between TiC and solid-solution carbide. in the speci-men with 10wt% VC the new set of solid-solution carbide grains of uniform and small size was formed in-side coarse TiC particles by diffusion induced recrystallizatin (DIR). With increasing the heat-treatment time fine recrystallized grains were dispersed homogeneously in the matrix and resulted in the increase in fracture strength.

  • PDF

Oxidation Resistance of Al Diffusion Coating Layer on TiAl (TiAl합금의 Al 피복시 Al확산 피복층의 내고온산화성)

  • Lee, C.H.;Choe, J.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.150-156
    • /
    • 1997
  • The effect of variation of pack activators, compositions, temperature and time on the thickness and structure of aluminide coatings formed on the TiAl alloy was studied in one-step packs and two-step packs containing aluminum for the purpose of improvement of oxidation resistance. The thickness of coating layer was increased with increasing $NH_4Cl$ content up to 3wt% and then it was saturated. Oxidation resistance of coating layers carried out at one step pack was superior to that of ones through of two step pack. The improvement of high temperature oxidation resistance was due to the formation of a protective $Al_2O_3$ surface layers and coating the alloys with $TiAl_3$ phase.

  • PDF

Thermal Stability of Lamellar Eutectic Structure in Fe-Ti Alloy (Fe-Ti합금계에서의 충상공정조직의 열적안정성)

  • Wey, Myeong Yong;Hasebe, Mitsuhiro
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.121-127
    • /
    • 1997
  • In order to elucidate thermal stability of Fe-$Fe_2Ti$ eutectic structure, the initial several structures have been investigated in the changes of coarsening and spheroidization during prolonged annealing under the eutectic temperature. The results are as follows: 1) The rate constant of coarsening and spheroidization was formulated as $S^{-n}-S_0^{-n}=k{\cdot}t$, where S is the total area of the interface between ${\alpha}$ and C($Fe_2Ti$) per unit volume, $S_0$ is initial value and k is the rate constant. 2) The coarsening and spheroidization mechanism was described by Ostwald ripening and controlled by diffusion of Ti-atom in ${\alpha}$-phase. 3) The spheroidization rate constant in eutectic lamellar structures was depended upon annealing temperature and showed the Arrhenius relation. The activation energy for spheroidization of lamellar structure was 365 kJ/mole.

  • PDF

Effect of Silica Addition on Phase Transformation Characteristics of Heat-Treated Combustion-Synthesized TiO2 Nanoparticles (실리카가 첨가된 연소합성 TiO2 나노입자의 열처리에 따른 상변환 특성)

  • Kim, Min-Su;Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.186-193
    • /
    • 2009
  • In this article, the effect of silica addition on the phase transformation characteristics of $TiO_2$ nanoparticles synthesized by using an $O_2$-enriched coflow, hydrogen, diffusion flame was investigated. TTIP(titanium tetra-isopropoxide) and TEOS(tetraethyl-orthosilicate) were used as precursors for $TiO_2$ and $SiO_2$ nanoparticles, respectively. Based on the results from TEM and XRD analysis, it is believed that the silica addition on the flame synthesis of $TiO_2$ nanoparticles reduces the particle size distribution and raises the temperature of the phase transition from anatase to rutile. But the reduced sizes of the synthesized particles due to the silica addition made the sintering and phase transformation of particles more easily.

Phase Transformation Characteristics of Combustion-Synthesized TiO2 Nanoparticles (연소합성 TiO2 나노입자의 고온 상변환 특성에 관한 연구)

  • Choi, Shang-Min;Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2008
  • In this article, $TiO_2$ nanoparticles were synthesized by using $O_2$-enriched coflow, hydrogen, diffusion flames. We investigated the thermal stability of the flame-synthesized $TiO_2$ nanoparticles by examining the crystalline structures of the nanoparticles. Also, the results were compared with those of commercial P-25 nanoparticles. $TiO_2$ nanoparticles, which were spherical with diameters approximately ranging from 30 to 60nm, were synthesized. From the XRD analyses, about 96wt% of the synthesized nanoparticles were anatase-phase. After the heat-treatment at $800^{\circ}C$ for 30 minutes, the synthesized $TiO_2$ nanoparticles showed no significant changes of their shapes and crystalline phases. On the other hand, most of the commercial particles sintered with each other and changed to the rutile-phase. Based on the result of XRD analysis it is believed that the flame-synthesized $TiO_2$ nanoparticles have higher thermal stability at $800^{\circ}C$ than the commercial particles.