• Title/Summary/Keyword: Ti/Al electrodes

Search Result 52, Processing Time 0.028 seconds

Study of Oxygen Plasma Effects to Reduce the Contact Resistance of n-type GaN with Nitrogen Polarity (질소 분극면을 갖는 N형 질화물반도체의 접촉저항 감소를 위한 산소 플라즈마 효과에 관한 연구)

  • Nam, T.Y.;Kim, D.H.;Lee, W.H.;Kim, S.J.;Lee, B.G.;Kim, T.G.;Jo, Y.C.;Choi, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.10-13
    • /
    • 2010
  • We studied the effect of $O_2$ plasma treatments on the electrical property of Ti / Al ohmic contacts to N-face n-type GaN. The surface of N-face, n-type GaN has been treated with $O_2$ plasma for 120 s before the deposition of bilayered electrodes, Ti (50 nm) / Al (35 nm), and its contact resistance was compared with that of the reference sample without $O_2$ plasma. As a result, we found that the ohmic contact was reduced from $4.3\;{\times}\;10^{-1}\;{\Omega}cm^2$ to $1.25\;{\times}\;10^{-3}\;{\Omega}cm^2$ by applying $O_2$ plasma on the surface of n-type GaN, which was attributed to the reduction in the Schottky barrier height (SBH), caused by nitrogen vacancies formed during the $O_2$ plasma process.

A Design Technology of Ceramic Tube for High Efficiency Ozone

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Dong-Hoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.77-80
    • /
    • 2003
  • An innovative ozonizer has been developed using a high frequency, surface discharge and a high purity Ti-Si-AI ceramic catalyst as a dielectric component. Using a type of thin film, a thin cylindrical compound ceramic catalyst layer was adhered to the outside surface of its inner electrode. An alternating current (AC) exciting voltage with frequencies from 0.6 KHz to 1.0 KHz and peak-to-peak voltages of 4-6 ㎸ was applied between the electrodes to produce a stable high-frequency silent discharge. A substantial reduction of the exciting voltage was also enabled by means of a thin Ti-Si-Al ceramic catalyst tube. As a result, the ozonizer can effortlessly obtain the required ozone concentration (50-60 g/$m^2$ for oxygen) and high ozone efficiency consumption power (180 g/kWh for oxygen) with-out the assistance of any particular methods. For purposes of this experiment, oxygen gas temperature was set at 2$0^{\circ}C$, with an inner reactor pressure of 1.6 atm at 600 Hz and a flow rate of 2 l/min.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

Ozone Generation Characteristic of Ceramic Reactor using Ti-Al-Si (세라믹 방전관의 오존 발생 특성)

  • Cho, K.H.;Park, J.Y.;Park, S.H.;Lee, D.H.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.206-208
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequence surface discharge and a high purity ceramic as its dielectric component. And A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. An ac exciting voltage with frequency to 0.6 kHz from 1.0 kHz and $4{\sim}6$ kV of peak-to-peak is applied between the electrodes to produce a stable high-frequency silent discharge for generation of ozone. A substantial reduction of the exciting voltage is also enabled by using a thin ceramic. As a result, the ozonizer can easily produce ozone concentration(50 $g/m^3$ for oxygen) and power efficiency(240 g/kWh for oxygen) without using a special enrichment means.

  • PDF

Characterization of BST films for high tunable thin film capacitor

  • No, Ji-Hyeong;Song, Sang-U;Kim, Ji-Hong;Go, Jung-Hyeok;Mun, Byeong-Mu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.179-179
    • /
    • 2009
  • This is for the electrical characterization by IDC pattern using BST$(Ba_{0.5}Sr_{0.5}TiO_3)$ thin film. BST materials had been chosen for high frequency applications due to it's high permitivity and tunability. The BST thin films have been deposited on $Al_2O_3$ Substrates by Nd-YAG pulsed laser deposition with a 355nm wavelength at $700\;^{\circ}C$. The post deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for 1 hours. The capacitance of IDC patterns have been measured from 1 to 10 GHz as a function of electric field ($\pm40$ KV/cm) at room temperature using inter-digital Au electrodes deposited on top of BST. The IDC patterns have three type of fingers number. For the 10 pairs finger was the best capacitance onto $Al_2O_3$ substrate. The capacitance was 0.9pF. Also Dielectric constant was been 351 at 100 mTorr and annealing temperature $750^{\circ}C$ for 1 hour. The loss tangent was been 0.00531.

  • PDF

Electrical Characterization of BST Thin Film by IDC pattern (IDC 패턴에 따른 BST 전기적 특성)

  • Roh, Ji-Hyoung;Kim, Sung-Su;Song, Sang-Woo;Kim, Ji-Hong;Koh, Jung-Hyuk;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.200-200
    • /
    • 2008
  • This paper reports on electrical characterization by IDC pattern using BST$(Ba_{0.5}Sr_{0.5}TiO_3)$ thin film. BST thin films have been deposited on $Al_2O_3$ Substrates by Nd-YAG pulsed laser deposition with a 355nm wavelength at $700^{\circ}C$. The post deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for I hours. The capacitance of IDC patterns have been measured from 1 to 10 GHz as a function fo electric field (${\pm}40$ KV/cm) at room temperature using interdiigitated Au electrodes deposited on top of BST. The IDC patterns have three type of fingers number. For the finger paris was increased onto $Al_2O_3$, the capacitance increased. The capacitance of 5 pairs finger was 0.3pF and 10 pairs finger was 0.9pF.

  • PDF

The characteristics of $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films deposited on $RuO_2$ bottom electrodes ($RuO_2$하부전극상에 증착된 $(Ba_{0.5}Sr_{0.5})TiO_3$박막의 특성)

  • 백수현;박치선;마재평
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.407-410
    • /
    • 1998
  • The characteristics of $(Ba,Sr)TiO_3$[BST] thin films with the variation of $O_2/Ar$ ratio in sputtering gas deposited on $RuO_2$ bottom electrode were investigated. Dielectric constant of BST film increases from 135 to 190 with increasing oxygen partial pressure from 10 to 50, which is mainly due to the improved crystallinity of BST film. The instability of $RuO_2$ surface in $BST/RuO_2$ interface and the increase in the surface roughness of BST thin films with higher $O_2/Ar$ ratio appeared to play an important roles on the degradation of the leakage current characteristics of $Al/BST/RuO_2$ capacitor with various $O_2/Ar$ ratio in sputtering gas. As a consequence, the leakage current of BST thin film showed the lowest value of $1.9{\times}10^{-7}\; A/{\textrm}{cm}^2$ at $O_2/Ar{\approx}1/9$.

  • PDF

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Properties of Ferroelectric Materials Applicable to Nano-storage Media (탐침형 정보 저장장치에 응용 가능한 강유전체 물질의 특성 연구)

  • Choi J.S.;Kim J.S.;Hwang I.R.;Byun I.S.;Kim S.H.;Jeon S.H.;Lee J.H.;Hong S.H.;Park B.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.173-179
    • /
    • 2006
  • We have investigated structural and electrical properties of $PbZr_{0.3}Ti_{0.7}O_{3}$ (PZT) thin films deposited by pulsed laser deposition methods. PZT thin films have been deposited on $LaMnO_3$ (LMO) bottom electrodes with $LaAlO_3$ (LAO) substrates during different deposition times. High-resolution x-ray diffraction data have shown that all the PZT films and bottom electrodes are highly oriented. The thickness of each film is determined by field-emission scanning electron microscope. We have also observed root mean square roughness by using atomic force microscopy mode, and local polarization distribution and retention behavior of a ferroelectric domain by using piezoelectric force microscopy mode. A PZT/LMO structure has shown good ferroelectric and retention properties as the media for nano-storage devices.