• 제목/요약/키워드: Ti$_3$SiC$_2$

검색결과 885건 처리시간 0.035초

SiC 휘스커 및 TiC 입자 강화 알루미나 복합재료의 기계적 성질과 미세조직 (Mechanical Properties and Microstructures of Alumina Composites Reinforced with SiC Whiskers and TiC Particles)

  • 이영규;김준규;조원승;최상욱
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.792-798
    • /
    • 2000
  • Alumina composites reinforced with SiC whiskers only or combinded with TiC particles were prepared by hot-pressing at 1850$^{\circ}C$ for 1h. The mechanical properties and microstructures of composites were investigated in this study. By of addition either 20 vol% SiC whiskers or 20 vol% TiC particles, the flexural strength fo alumina was increased from 360 MPa to 650 MPa or 730 MPa, respectively, and the KIC was also increased from 3.5 MPa$.$m1/2 to 5.5MPa$.$m1/2 or 4.4MPa$.$m1/2, respectively. In the case of composites with 20 vol% SiC whiskers and 2 vol% TiC particles. The flexural strength and KIC showed relatively high value of 800 MPa and 5.3MPa$.$m1/2, respectively. The improvement of mechanical properties was considered to be due to both the smaller average grain size and the crack deflection.

  • PDF

nc-TiC/a-SiC 나노복합체코팅의 기계적 특성 및 미세구조에서 비정질 SiC의 역할 (Role of Amorphous Silicon carbide in Microstructure and mechanical Properties of nc_TiC/a-SiC Nanocpomposite Coatings Prepared by PECVD )

  • 이주희;김광호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.123-124
    • /
    • 2007
  • 3성분계 Ti-Si-C 코팅은 PECVD 기술에 의해 WC-Co 기판에 합성되었다. 이 연구에서 Ti-Si-C코팅에서의 비정질 silicon carbide 상의 효과는 XRD, XPS, TEM에 의해 분석되었다. TiC 결정의 입자크기는 비정질 silicon carbide의 침투 현상 때문에 Si의 함유량이 증가됨에 따라 감소된다. Ti-Si-C 코팅은 5.2%의 Si함유량에서 나노크기의 nc-TiC결정과 비정질 a-SiC로 이루어져 있고 최고 경도 33GPa와 탄성율 330GPa를 각각 보여주고 있다. 이 수치들은 순수한 TiC(-21GPa, 260Gpa)보다 눈에 띄게 높아졌다.

  • PDF

Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method)

  • 조훈성;양중식
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

TiAlCrSiN 박막의 고온 산화 부식 (High-temperature Oxidation of the TiAlCrSiN Film)

  • 이동복;김민정
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

$TiB_2$ 첨가량에 따른 $\beta$-SiC-$TiB_2$ 복합체의 전기적.기계적 특성 평가 (The Estimation for Mechanical and Electrical Properties of $\beta$-SiC-$TiB_2$ Composites by $TiB_2$)

  • 박미림;신용덕;주진영;최광수;이동윤;소병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.75-77
    • /
    • 2001
  • The mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electro conductive ceramic composites were investigated as functions of the transition metal of $TiB_2$. The result of phase analysis for the SiC-$TiB_2$ composites by XRD revealed $\alpha$-SiC(6H). $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density showed the lowest 84.8% for the SiC-$TiB_2$ composites added with 39vol.%$TiB_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of $7.8\;MPa{\cdot}m^{1/2}$ for composites added with 39vol.%$TiB_2$ under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%$TiB_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%$TiB_2$ composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

TiO2/SiOxCy 이중 박막을 이용한 투명 친수성/내마모성 반사방지 코팅 (Anti-Reflective Coating with Hydrophilic/Abraion-Resistant Properties using TiO2/SiOxCy Double-Layer Thin Film)

  • 이성준;이민교;박영춘
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.345-351
    • /
    • 2017
  • A double-layered anti-reflective coating with hydrophilic/abrasion-resistant properties was studied using anatase titanium dioxide($TiO_2$) and silicon oxycarbide($SiO_xC_y$) thin film. $TiO_2$ and $SiO_xC_y$ thin films were sequentially deposited on a glass substrate by DC sputtering and PECVD, respectively. The optical properties were measured by UV-Vis-NIR spectrophotometer. The abrasion-resistance and the hydrophilicity were observed by a taber abrasion tester and a contact angle analyzer, respectively. The $TiO_2/SiO_xC_y$ double-layer thin film had an average transmittance of 91.3%, which was improved by 10% in the visible light region (400 to 800 nm) than that of the $TiO_2$ single-layer thin film. The contact angle of $TiO_2/SiO_xC_y$ film was $6.9^{\circ}$ right after UV exposure. After 9 days from the exposure, the contact angle was $10.2^{\circ}$, which was $33^{\circ}$ lower than that of the $TiO_2$ single-layer film. By the abrasion test, $SiO_xC_y$ film showed a superior abrasion-resistance to the $TiO_2$ film. Consequently, the $TiO_2/SiO_xC_y$ double-layer film has achieved superior anti-reflection, hydrophilicity, and abrasion resistance over the $TiO_2$ or $SiO_xC_y$ single-layer film.

Properties of Electrical Discharge Machinable $SiC-TiB_2$ Composites

  • Kim, Young-Wook;Park, Heon-Jin;Lee, June-Gunn;Lee, Soo W.;Chung, Soon-Kil
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.125-130
    • /
    • 1995
  • Electrical discharge machinable $SiC-TiB_2$ composites were fabricated by hot-pressing. Their mechanical and electrical properties were determined as a function of $TiB_2$ content. The addition of $TiB_2$ to SiC matrix increased the strength and toughness and decreased electrical resistivity. The flexural strength and fracture toughness of SiC-40 vol% $TiB_2$ composited were approximately 50% higher than those of monolithic SiC ceramics. Microstructural analysis showed that the toughening was mainly due to the crack deflection, with some possible contribution from crack branching or microcracking.

  • PDF

상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향 (Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering)

  • 주진영;박미림;신용덕;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

Ti/SiC(4H) 쇼트키 장벽 다이오드의 전기적 특성 (The electrical properties of a Ti/SiC(4H) sehottky diode)

  • 박국상;김정윤;이기암;장성주
    • 한국결정성장학회지
    • /
    • 제7권3호
    • /
    • pp.487-493
    • /
    • 1997
  • SiC(4H) 결정에 Ti을 열증착하여 Ti/SiC(4H) 쇼트키(Schottky) 장벽 다이오드를 만들었다. SiC(4H)의 주개농도(donor concentration)는 전기용량-전압(C-V) 측정으로부터 $2.0{\times}10^{15}{\textrm}{cm}^{-3}$이었으며, 내부전위(built-in potential)는 0.65 V이었다. 전류-전압(I-V) 특성으로 부터 다이오드의 이상계수(ideally factor)는 1.07이었으며, 역방향 항복전장(breakdown field)은 약 $1.7{\times}10^3V/{\textrm}{cm}$이었다. 상온에서 $140^{\circ}C$까지 온도변화에 따라 측정된 포화전류로 부터 구한 전위장벽(potential barrier)은 0.91 V이었는데, 이는 C-V 특성으로 부터 구한 전위장벽과 거의 같았다.

  • PDF

SiC 전도성 세라믹 복합체의 특성에 미치는 TiB$_2$의 영향 (Effect of TiB$_2$on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;박미림;소병문;이동문
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.141-146
    • /
    • 2002
  • The mechanical and electrical properties of the pressureless sintered SiC-TiB$_2$electroconductive ceramic composites were investigated as functions of the transition metal of TiB$_2$. The result of phase analysis for the SiC-TiB$_2$ composites by XRD revealed $\alpha$-SiC(6H), TiB$_2$, and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phases. The relative density showed the lowest 84.8% for the SiC-TiB$_2$composites added with 39vol.%TiB$_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 7.8 MPa.m$^{1}$2/ for composites added with 39vol.%TiB$_2$under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%TiB$_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%TiB$_2$composites was all positive temperature coefficient resistance(PCTR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.EX>.