• Title/Summary/Keyword: Thrust density

Search Result 133, Processing Time 0.028 seconds

Consideration of locked-in stresses during backfill preparation

  • Gezgin, Ahmet Talha;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.247-258
    • /
    • 2019
  • Soil strength and failure surface geometry directly influence magnitudes of passive earth thrust acting on geotechnical retaining structures. Accordingly, it is expected that as long as the shape of the failure surface geometry and strength parameters of the backfill are known, magnitudes of computed passive earth thrusts should be highly accurate. Building on this premise, this study adopts conventional method of slices for calculating passive earth thrust and combines it with equations for estimating failure surface geometries based on in-situ stress state and density. Accuracy of the proposed method is checked using the results obtained from small-scale physical retaining wall model tests. In these model tests, backfill was prepared using either air pluviation or compaction and different backfill relative densities were used in each test. When the calculated passive earth thrust magnitudes were compared with the measured values, it was noticed that the results were highly compatible for the tests with pluviated backfills. On the other hand, calculated thrust magnitudes significantly underestimated the measured thrust magnitudes for those tests with compacted backfills. Based on this observation, a new approach for the calculation of passive earth pressures is developed. The proposed approach calculates the magnitude and considers the influence of locked-in stresses that are the by-products of the backfill preparation method in the computation of lateral earth forces. Finally, recommendations are given for any geotechnical application involving the compaction of granular bodies that are equally applicable to physical modelling studies and field construction problems.

Spray Characteristics of Effervescent Swirl Injectors for Variable Thrust (가변추력을 위한 기체주입식 와류형 분사기의 분무특성)

  • Lee, Wongu;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • A fundamental study on a gas injection variable thrust method for thrust throttling in a liquid rocket engine was conducted. The gas injection variable thrust has the advantage of not only being able to control the thrust with a simple structure but it also increases the atomization performance through the injection pressure drop that increases in direct proportion to the density reduction. In this study, spray characteristics such as spray instability, spray pattern, spray angle, and breakup length based on changes in the liquid mass flow rate and amount of injected gas were investigated using effervescent swirl injectors.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

Design and Characteristic Analysis of Linear Oscillating Actuator with Structure (직선 왕복 액추에이터의 구조에 따른 설계 및 특성 검토)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.537-544
    • /
    • 2015
  • This paper provided two types of design method on moving core type LOA and one type of design method on moving coil type LOA, and compared and examined each of its characteristics. In order to conduct parametric design process, voltage equation was used to schematize Lmin/K and L/M map, and the schematized map was used to determine Lmin, K or L, M. In order to meet requirements such as thrust force and input voltage and to satisfy the target values of Lmin, K or L, M, the types and sizes of each type were designed using geometry design process. 2-FEA was conducted for each of the designed model. After examining thrust force based on the location of the mover, Type-1 showed radical change in thrust force as movers moved, and Type-2 and Type-3 showed constant appearance of thrust force. The total volume of the designed LOA model was compared to select the model with highest thrust force density. Also, the weight of the mover for each model was compared in order to select the model that was predicted to have highest mechanical responsiveness and stroke characteristics.

Characteristics Analysis of the Thrust Force in LPM as Magnetic Circuit Using the FEM (유한요소법을 이용한 LPM의 자기회로 구성별 추력특성해석)

  • Cho, Hyun-Gil;Kim, Il-Jung;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.30-32
    • /
    • 1994
  • In this paper, in order to design Linear Pulse Motor(LPM) effectively, the flux density and the thrust force of LPM have been calculated in the air gap by using Finite Element Method(FEM). The kinds of magnetic circuit arc the variable reluctance(VR), hybrid(HB), and permanent magnet(PM) type. Tooth and slot shape arc rectangular, wedge head(tapcr; 10, 20 degree), and semi-circle type.

  • PDF

Improvement of Thrust Force Characteristics by Micro-step Drive of 2 Phase 8 Pole HB type LPM (2상 8극 HB형 LPM의 마이크로스텝 구동에 의한 추력특성 개선)

  • Kim, Sung-Heon;Lee, Eun-Woong;Kim, Il-Jung;Jo, Hyun-Gil;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.140-142
    • /
    • 1997
  • After finding the harmonic components by measuring the thrust force, which affects high accuracy position control during micro-step drive of LPM, the exciting current was calculated to remove them. Also the detent force being induced by magnetic flux density of permanent magnetic was measured. It was comfirmed that the tooth and slot width was designed properly thresh the analysis of detent force.

  • PDF

Dynamic analysis and control parameters deduction of Hybrid thrust magnetic bearing (하이브리드 스러스트 마그네틱 베어링의 제어변수 도출 및 동특성 해석)

  • Jang, Seok-Myeong;Lee, Un-Ho;Sung, So-Young;Choi, Jang-Young;Kim, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.724_725
    • /
    • 2009
  • This paper deals with control parameters deduction and dynamic analysis of hybrid thrust magnetic bearing(HTMB). The flux density at air-gap is obtained from system modeling which considers permanent magnet and electro magnet. The vertical force is derived from flux density using maxwell's stress tensor. An accurate linear model is obtained by using linear approximations of the attraction force around the nominal equilibrium point. The dynamic simulation of the HTMB using the PD controller is conducted and control parameters are deducted.

  • PDF