• Title/Summary/Keyword: Thrust control algorithm

Search Result 64, Processing Time 0.03 seconds

A Study on Control Algorithm of Thrust Control Valve for a Liquid Rocket Engine (액체로켓엔진용 추력제어밸브의 제어 알고리즘 연구)

  • Jung, Taekyu;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1055-1062
    • /
    • 2012
  • In this paper, the mathematical models and control algorithm of a thrust control valve were described as a precedent study on the design of thrust control algorithm for a liquid rocket engine (LRE). Numerical simulations were performed using a simplified simulation system of an LRE and the developed mathematical models were validated by comparison with the experimental results. Through these research, basic data were acquired for the development of a thrust control algorithm for a LRE.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

Control Method for Minimizing Thrust Ripple of PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형전동기의 추력맥동 저감 제어기법)

  • 안종보;강도현;김지원;정수진;임태윤;박준호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Permanent magnet-excited transverse flux linear motor(TFLM) is known to have more excellent ratio of force to weight than any other linear motors. But, thrust generated by phase current is non-linear with regard to current and relative position like switched reluctance motor. This makes current and speed controller design difficult. This paper presents a method on minimization of thrust ripple of permanent magnet-excited transverse flux linear motor. Using genetic algorithm(GA), optimal current waveform can be found under the constraint conditions such as current limit, minimum of ohmic loss and limited rate of change of current etc. The effectiveness is verified through computer simulation and experimental test results.

Control of pressure and thrust for a variable thrust solid propulsion system using linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.167-174
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable to long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For this we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using feedback linearization technique. Derived thrust equation and designe a thrust control model. We design the proportion-integral controller for linearizing about operating point. We also demonstrate the performance of controller model through numerical simulations.

  • PDF

Modeling and Development of an Integrated Controller for a Ship with Propellers and Additional Propulsion Units (프로펠러와 부가추력장치를 갖는 특수선의 모델링 및 통합제어기 개발)

  • Kim Jong Hwa;Lim Jae Kwon;Lee Byung Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Dynamic Positioning(DP) system maintains ship's position (fixed location or predetermined track) exclusively by means of CPPs and thrusters. To generate the control input adequate to various situation an integrated controller for CPPs and thrusters is required. The integrated controller is composed of a thrust calculation algorithm and a thrust allocation algorithm. The thrust calculation algorithm generates thrusts in the surge direction and the sway direction from the desired forward and lateral speed and generates a moment about the yaw axis from desired heading angle. The thrust allocation algorithm allocates the generated thrusts and moment to each CPP and thruster. Computer simulations are executed to confirm the effectiveness of the suggested controller.

A Study on Deduction of Equivalent Circuit Parameters and Verification of Control Algorithm of Thrust Force of a Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소형 모델의 등가회로 파라미터 도출 및 추진력 제어 알고리즘 검증 연구)

  • Park, Chan-Bae;Mok, Hyung-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1248-1254
    • /
    • 2010
  • Authors conducted a deduction of some parameters using the magnetic equivalent circuit method and a verification study of the thrust force control algorithm of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap of the secondary aluminium plate of a rotary-typed small-scaled LIM. And authors conducted a verification study of the indirect vector control algorithm with constant slip frequency by using the rotary-typed small-scaled LIM tester set on the basis of the calculated LIM parameters. Finally authors accomplished a research on applicability for LIM railway transit.

New Low Vibration Control Algorithm of Linear Pulse Motor Using Neuro-Fuzzy Theory (뉴로-퍼지이론을 이용한 리니어 펄스 모터의 새로운 저진동 정밀제어 알고리즘)

  • Bae Dong-Kwan;Park Kyung-Bin;Lee Yang-Guy;Kim Kwang-Heon;Park Hyun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.18-21
    • /
    • 2001
  • This paper describes the method of vibration supprssion on a control algorithm using Neuro-Fuzzy Theory in Linear Pulse Motor (LPM). The total thrust force Is distorted by magnetic and coil flux, and we classify the harmonic parts of it. A modulated current from harmonic components of static thrust characteristics of LPM compensates with reference current to total thrust force. Low vibration is obtatained by the method of current compensation using ANFIS.

  • PDF

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

Performance analysis of an explicit guidance system (직접식 관성유도시스템의 성능 분석)

  • 최재원;윤용중;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.419-424
    • /
    • 1991
  • In this paper, a fuel minimizing closed loop explicit inertial guidance algorithm for the orbit injection of a rocket is developed. In this formulation, the fuel burning rate and magnitude of thrust are assumed constant, and the motion of a rocket is assumed to be subject to the average inverse-square gravity, but with negligible atmospheric effects. The optimum thrust angle for obtaining the given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vectors is determined by using Pontryagin's Maximum Principle. To establish the real time processing, many algorithms of the onboard guidance software are simplified. Simulations for the explicit guidance algorithm, for the 2nd-stage flight of the N-1 rocket, are carried out. The results show that the guidance algorithm works well in the presence of the maximum .+-.10 % initial velocity and altitude error. The effects of the guidance cycle time is also examined.

  • PDF