• Title/Summary/Keyword: Thrust chamber

Search Result 271, Processing Time 0.026 seconds

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling. (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (I))

  • Park, Kye-Seung;Kim, Yoo;Kim, Tae-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • This paper describes a general design procedure of regenerative cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that soot from combustion products have strong influence on the cooling characteristics of LRE.

Design and Analysis of Two-Directional Regenerative Cooling Passages for Liquid Rocket Nozzle (액체로켓연소실의 양 방향 재생냉각유로 설계/해석)

  • Kim, Seong-Ku;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2008
  • The 30 tonf-class liquid rocket combustor currently being developed is designed to connect the fuel feeding line at a middle position of the supersonic nozzle in order to reduce both pressure loss in the regenerative cooling passage and overall envelope of the thrust chamber in spite of increase in design complexity. To verify the design of cooling passages including fuel ring, connecting holes, two-directional cooling channels and collectors, numerical analysis has been performed.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Concept Design of 1700kN class LRE System using UDMH-LOX(I) (1700kN급 UDMH-LOX 계열 액체로켓엔진 시스템 개념설계(I))

  • Gostev V.A.;Lim SeokHee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.157-161
    • /
    • 2004
  • The colse type of engine system, in which the combustion gas after the gas-turbine with high temperature is supplied to the combustion chamber, was selected to increase the energy characteristics in making the rocket engine scheme which makes 1700kN thrust. The nozzle was designed with consideration of film cooling, nozzle efficiency, and the real state of cobmustion gas during the expansion in nozzle. The change of gas state and the composition of the gas through the nozzle was studied by the graphic, too.

  • PDF

Development of Hydraulic Testing Machine for Flexible Seal on Solid Rocket Motor (고체모터 플렉시블 씰을 위한 수압시험장치 개발)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.227-230
    • /
    • 2008
  • Movable nozzle with a flexible seal have been used for Thrust Vector Control of the Solid Rocket Motor. The Hydraulic Testing Machine is consisted of Chamber, Actuator, Counterpotentiometer, and evaluates performance of Flexible seal for spring torque and axial compression. The qualification test of Flexible seal was conducted on design condition. A study fix up method of formulation, operation, inspection on Hydraulic testing machine.

  • PDF

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

Development of a design theory of a pressure vessel with combined structure of the metal and the composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.61-65
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by tile design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ II (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 II)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Kim, Hak-Chul;Moon, Keun-Hwan;Choi, Won-Jun;Jung, Sik-Hang;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.50-54
    • /
    • 2011
  • This paper presents a two-phase model for hybrid rocket internal ballistics design using $N_2O$ as oxidizer The two-phase model results are compared with data obtained from static firing test. Two-phase model is suitable for blow-down type with saturated compressible fluid as $N_2O$, presented the result by Part 1. HDPE as Fuel, and $N_2O$ as oxidizer were used during the static firing test. The combustor were designed for an average thrust of 30 kgf where oxidizer tank pressure in set to 50 bar. The numerical results of internal ballistic showed good agreements with static firing test results where thrust, oxidizer tank pressure and chamber pressure are compared.

  • PDF

Performance Prediction of Liquid Rocket Thrust Chambers with Nonuniform Propellant Mixing (추진제의 비균일 혼합분포를 고려한 액체로켓 추력실의 성능 예측기법 개발)

  • 김성구;최환석;한영민;이광진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.82-88
    • /
    • 2006
  • In order to effectively reduce thermal loads on regenerative cooled walls, fuel cooling injectors and film cooling devices have often been employed. The present study has established a numerical methodology for prediction of performance and near-wall temperature distribution taking into account the nonuniform mixing due to these additional cooling devices. A correction procedure for main propulsive parameters has also been proposed based on comparison between prediction and experimental data. Under the computational framework of this study, the predicted results were in good agreement with hot-firing test data for a 30 tonf-class full-scale combustor at the design and off-design conditions. As a consequence, the present numerical method is expected to be useful for design and evaluation of regenerative cooled liquid rocket thrust chambers.