• Title/Summary/Keyword: Thrust Vector Control

Search Result 144, Processing Time 0.027 seconds

End-Effect Compensation in Linear Induction Motor Drives

  • Satvati, Mohammad Reza;Vaez-Zade, Sadegh
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.697-703
    • /
    • 2011
  • In this paper a control system with a high performance dynamic response for linear induction motors (LIMs) is proposed which takes into account the end-effect in both the machine model and the control system. Primary flux oriented control has two major drawbacks i.e. a lack of decoupling of the thrust and the flux and a possibility of system instability due to the end-effect. Both of these drawbacks have been dealt with in this paper. A flux estimation method is proposed to correct the flux orientation error caused by the end effect. Extensive motor performance evaluations under the proposed control system prove its superiority over conventional vector control.

The Study on Aerodynamic Characteristics for the Design of High Efficiency Jet Vane (고 효율 제트 베인 설계를 위한 공기역학적 특성 연구)

  • 길경섭;정용갑;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Of the various means for active trajectory correction, a thrust vector control system represents the only principle independent of missile external forces so that this method is operative. The purpose of this study is to analyze the characteristic of jet vane TVC(Thrust vector control) system among mechanical jet deflection. To ensure high performance leading edge shape, aspect ratio and ablated condition is optimized. Supersonic flow system, jet vanes and nozzle with Mach number 2.88 and under expansion ratio 2 were designed to study aerodynamic characteristics of leading edge shape, aspect ratio and ablated conditions.

Performance analysis of an explicit guidance system (직접식 관성유도시스템의 성능 분석)

  • 최재원;윤용중;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.419-424
    • /
    • 1991
  • In this paper, a fuel minimizing closed loop explicit inertial guidance algorithm for the orbit injection of a rocket is developed. In this formulation, the fuel burning rate and magnitude of thrust are assumed constant, and the motion of a rocket is assumed to be subject to the average inverse-square gravity, but with negligible atmospheric effects. The optimum thrust angle for obtaining the given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vectors is determined by using Pontryagin's Maximum Principle. To establish the real time processing, many algorithms of the onboard guidance software are simplified. Simulations for the explicit guidance algorithm, for the 2nd-stage flight of the N-1 rocket, are carried out. The results show that the guidance algorithm works well in the presence of the maximum .+-.10 % initial velocity and altitude error. The effects of the guidance cycle time is also examined.

  • PDF

Speed Field orient control of permanent magnet linear motor according to determination of system rate. (직선형 영구 자석 동기 모터의 시스템 정격 선정에 따른 속도 제어 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Yang, Moon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • This paper presents design of speed control system for slot less iron-cored PM linear synchronous motor using space vector PWM. the design must be considered by the useable limits of the DC link voltage and dynamic operating rage as well as the characteristics of design parameters in a point of system. Therefore, in this paper, the permissible operating range of manufactured motor by determination of rate speed and rate thrust according to switching scheme of DC link voltage are offered. The vector control requires information about rotor position. And we can need to the Hall sensor for sampling current. In order to agree with this purpose, Digital Signal Processor(TMS320F240x) developed for implementation of a speed Field Oriented Control.

  • PDF

조종장치 개발을 위한 지상 시험장치의 효과적인 연계방안

  • 김월동;박성준
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.4-4
    • /
    • 1997
  • 로켓 조종장치는 크게 추력방향 조종(TVC, Thrust Vector Control) 장치, 측면추력조종(Lateral Thrust Control) 장치 그리고 공기역학 조종면으로 분류할 수 있다. 조종장치의 공통된 특징은 모터가 작동하거나 유도탄이 비행할 때만 타의 효과가 발생한다는 점이다. 그러므로 조종장치를 개발하기 위해서는 이상류 초음속 유동이나 삼음속 이상의 자유유동(freestream)을 지상에서 효과적으로 모의할 수 있는 지상 시험장치가 필요하다. 이 시험장치에는 초음속 풍동과 유동 시험장치(cold-flow test stand), 그리고 6분력 트러스트 스텐드가 포함된다. 삼성항공은 우주용 추진기관의 성능을 지상에서 간단한 장치를 구현하여 시험할 수 있는 모의연소 시험장치, 노즐유동에 포함된 고체입자를 직접 수집할 수 있는 고체입자 포집장치 등 각종 시험장치를 제작하였다. 이를 바탕으로 차세대 전술유도탄의 핵심기술가운데 하나인 조종장치와 이를 효과적으로 개발하기 위한 지상 시험장치 확보에 착수하고 있다.

  • PDF

Experimental Study of the Effect of Side Plate on the Coanda Effect of Sonic Jet (측판이 음속 제트의 코안다 효과에 미치는 영향에 관한 실험적 연구)

  • Park, Sanghoon;Chang, Hongbeen;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • An experimental study for the characteristics of the thrust-vectoring of a sonic jet utilizing the coanda flap installed at a rectangular nozzle exit is performed. Two side plates are installed at both sides of the flap to decrease the three dimensional effects of the jet on the flap surface. Schlieren flow visualizations and quantitative measurements of the deflection angle of thrusting vector show that the side plates are able to delay the separation of the jet at the downstream of the flap surface. Substantial increase in the deflection angle of the jet as high as $72^{\circ}$ and small thrust loss as low as 7% are obtained by the present thrust-vectoring technique using the side plates.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit

  • Cho, Han-Cheol;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2008
  • The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.

A Study on the Control Characteristics of Thrust Vector Control Actuation System for Movable Nozzle of Solid Motor (고체모터 가동노즐 추력벡터제어용 구동장치시스템의 제어특성 연구)

  • Min, Byeong-Joo;Lee, Hee-Joong;Park, Moon-Su;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The motion of flexseal bearing for movable nozzle has inherent nonlinear characteristics due to floating rotational center and compression by combustion pressure of solid motor. To perform precise attitude control in spite of these characteristics, the TVC actuation system requires counter potentiometer as an extra position feedback sensor of movable nozzle to form a compensated control loop. The prototype TVC actuation system, test equipments and compensated controller are newly designed, manufactured and tested in consideration of counter potentiometer. On the basis of integration test, the inherent characteristics of movable nozzle and control characteristics of its TVC actuation system are analyzed and summarized in this paper.