• Title/Summary/Keyword: Thrust Vector Control

Search Result 144, Processing Time 0.035 seconds

Performance Test of a Jet vane type Thrust Vector Control System (제트 베인형 추력편향장치의 성능시험)

  • 신완순;이정민;이택상;박종호;김윤곤;이방업
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.75-82
    • /
    • 1999
  • Theoretical analysis and performance test of Jet vane type Thrust Vector Control(TVC) were conducted using supersonic cold-flow system. The use of TVC Systems an in particular jet vanes, are currently being researched for use in air launch, ship launch, underwater launch and high altitude maneuvering of tactical missiles and rockets. The necessity to generate control forces to rapidly change the course of the missile is frequently required when traditional, exterior aerodynamic surfaces are unable to produce these forces, when the flow over the control surface is insufficient. This situation can occur at launch, or high angles of attack of the control surfaces. Jet vanes peformed well at all altitudes and environmental conditions, and jet vanes are extremely effective at deflection angles up to as high as $30^{\circ}$, make them ideal for the launch and maneuver applications. In this study, performance test of supersonic cold-flow system and visualization of supersonic jet was conducted, and shape and deflection angle effect of two types of jet vanes are investigated.

  • PDF

발사체 추력백터제어 구동장치용 컴퓨터 하드웨어 설계

  • Park, Moon-Su;Lee, Hee-Joong;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.56-64
    • /
    • 2004
  • In this research, design results of computer hardware which control solid motor movable nozzle thrust vector control(TVC) actuator for Korea Space Launch Vehicle I(KSLV-I) are described. TVC computer hardware is the equipment which has jobs for receiving control commands from Navigation Guidance Unit(NGU) and then actuating TVC actuator. Also, it has ability to communicate with other on board or ground equipments. Computer hardware has a digital signal processor as the main processor which is capable of high speed calculating ability of control algorithm, so it can have more stability, reliability and flexibility than the previous analog controller of KSR-III. Target board was designed for on board program development and then first prototype hardware was developed. Top level system design criteria, hardware configurations and ground support equipment of TVC computer system are described.

  • PDF

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Comparative Analysis of the PWM of an Inverter for an Electric Aircraft Thrust Motor

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2021
  • As global environmental regulations have been strengthened, the eco-friendly market has grown rapidly. In the field of aircraft, research on electric vertical take-off and landing aircraft that can enter city centers and perform personal air transportation using electric propulsion is ongoing. For aircraft using electric propulsion methods to operate reliably, electric power thrust systems are a key factor. Electric aircraft require a high power density for propulsion systems with strict limits on volume and weight. The efficient control of inverter systems is essential for achieving high power density. Therefore, in this paper, the characteristics of inverters and motors were analyzed through simulations based on the space vector pulse width modulation (PWM) and discontinuous PWM methods for controlling inverter systems.

The Analyses of Dynamic Characteristics and Flight Test Results of Airship Throughout the Flight Test (비행 시험을 통한 비행선의 운동 특성 해석 및 시험 결과 분석)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.214-221
    • /
    • 2005
  • For decades, airships have being developed in Europe (especially German) and America. Airships are planning to be used for advertisements and airliners as well. In Korea, KARI (Korea Aerospace Research Institute) is developing stratospheric communication airship and the similar research is carried out in Japan. Among them, Zeppelin of German has the cutting-edge airship technology with Zeppelin NT. In this paper, the flight performance and stability were evaluated by comparing mathematical theory and the real test. The stability was examined through dynamic modeling and assured by designing controllers at each flight mode. Elevator angle, rudder angle, magnitude of thrust and tilting angle of thrust vector were used as control inputs. Moreover, after measuring the airship velocity, flight direction, magnitude and direction of the wind, attitude angles and trajectories of the airship at each flight mode, the results were compared with the simulation. To get the reasonable data, low-pass filter and band-stop filter were designed to get rid of the sensor noise and engine vibration. The test was accomplished at cruise mode, turning mode, and deceleration. To conclude, with comparing the simulation data and flight test data, it could be known that the dynamic model used in this paper was reasonable.

초음속 유동 시험장치의 개발과 성능실험

  • 이정민;이택상;박종호;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.35-35
    • /
    • 1999
  • 최근 미사일 및 차세대 비행체에는 초기 고기동이나 무수한 제어력의 특성을 지닌 TVC 시스템이 많이 사용되고 있다. 기존의 공력 조타에 의한 비행 자세 제어방법은 속도의 2승에 비례하는 제어력을 발생하지만, TVC(Thrust Vector Control)를 이용하면 추력 방향을 변경하여 제어력을 얻음으로써 방향 제어에 보다 월등한 성능을 발휘할 수 있기 때문이다. TVC를 이용한 방향제어는 저속도 경우와 공기가 희박한 고 고도에서도 충분한 제어력을 얻을 수 있다. 그러나 그 우수성에 비추어 국내에서는 아직 그 성능에 대해 충분한 자료가 없는 실정이다.

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF

A Study on the Supersonic Flow Characteristics Through a Dual Throat Nozzle (이중목 노즐에서 발생하는 초음속유동 특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze a fundamental performance of a dual throat nozzle(DTN) at various nozzle pressure ratios(NPR) and throat area ratios. Two-dimensional, axisymmetric, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. NPR was varied in the range of NPR from 2.0 to 10.0, at different throat area ratios. The present computational results were validated with some experimental data available. Based upon the present results, the performance of DTN is discussed in terms of the discharge coefficient and thrust efficiency.

The Stabilized Speed Control Modeling of Single-side Linear Induction Motor Considering End-effect (단부효과가 고려된 편측형 선형유도전동기의 안정속도제어 모델링)

  • Lim, Hong-Woo;Chae, Bong;Choi, Moon-Han;Lee, Kang-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.266-273
    • /
    • 2006
  • In difference with the rotary type electrical machinery, the single-sided linear induction motor(SLIM) that generates the direct thrust, is widely used for the operation system of electrified railroad, lope-less elevation system, conveyer system, and so on. The operational principle of single-sided linear induction motor is constructively similar to the general rotary Induction motor It Is difficult to realize the complicate linear induction motor which is applied space vector pulse width modulation(SVPWM) system, but widely used in vector motor control system or servo control system because of its high performance in current control. In this paper, we has modeled the dynamic characteristic analyzing methode, and calculated efficiently the end effect by using equivalent circuit methode in the operating linear Induction motor control system.