• Title/Summary/Keyword: Thrust Axis

Search Result 106, Processing Time 0.027 seconds

Verification of Periodical Calibration for Iso-center Positions using Quality Assurance System for Irradiation Equipment Position Established at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.192-194
    • /
    • 2002
  • We present the results on the calibration of iso-center positions using the quality assurance system established at PMRC for determination of center position in X-ray and proton irradiation fields. Details on the system are presented in another presentation in this session. The equipment in the system is mounted on a patient treatment bed in each proton exposure room, G1 or G2. A center of a stainless ball on the equipment is set at a cross of laser markers located around the iso-center and fixed on the room and on the snout in the gantry. A proton beam or an X-ray beam is exposed onto the ball through a brass collimator of 100 mm ${\times}$ 100 mm and projected onto the imaging plate set at I cm behind the ball. On the axis perpendicular to the thrust axis of the gantry on the imaging plate, a distance between a center of the collimator image and a center of the ball image varies as a cosine function of gantry angles unless the ball is set on the iso-center. An amplitude of the cosine curve shows the distance between the ball and the iso-center, an offset the offset of the collimator, and a phase shift at a zero crossing point the ball direction viewed from the iso-center. We present the relation among the iso-center position, the laser maker position, and the center of proton and X-ray irradiation fields. Its stability and its reproducibility are discussed.

  • PDF

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

Compensating the Elliptical Trajectory of Elliptical Vibration Cutting Device (타원궤적 진동절삭기의 타원궤적 보정)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.789-795
    • /
    • 2011
  • In elliptical vibration cutting (EVC), cutting performance is largely affected by the shape of an elliptical path of the cutting tool. In this study, two parallel piezoelectric actuators were used to make an elliptical vibration cutting device. When harmonic voltages of $90^{\circ}$ out-of-phase are supplied to the EVC device, creation of an ideal elliptical trajectory whose major and minor axes are parallel to the cutting and thrust directions is anticipated from a kinematic analysis of the EVC device, however, the paths we experimentally observed showed significant distortions in its shape ranging from skew to excessive elongation of the major axis of the ellipse. To compensate distortions, an analytical model describing the elliptical path of the cutting tool was developed and verified with experimental results, and based on the analytical model, the distorted elliptical paths created at 100 Hz, 1 kHz, and 16 kHz were corrected for skew and elongation.

Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device (직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

Geological Structures of the Imgye Area, Kangweondo, Korea (강원도(江原道) 임계지역(臨溪地域)의 지질구조(地質構造))

  • Kim, Jeong Hwan;Kee, Weon Seo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.43-55
    • /
    • 1991
  • The Imgye area, in the NE Taebaegsan Region, consists of Precambrian granites and schist complex at the base and Paleozoic sedimentary rocks and amphibolite at cover. The granites in the area were previously thought to be Paleozoic in age, but recent geochronological data yields isotopic age ranging from $1837{\pm}82Ma$ to $2108{\pm}82Ma$ by Rb-Sr whole rock method. Therefore, basement-cover relations in the area should be reexamined. During the study, mylonite zone recognized along the contact boundary between Precambrian granites and Cambrian Jangsan Quartzite Formation. Mylonite zone has 150 - 250 m in width. Mylonitic rocks can divide into two groups; quartz mylonite derived from Jangsan Formation and mylonitic granites from Precambrian granites. Intensity of mylonitic foliation decreased toward the north. Amphibolite occurs as an intrusive sills within mylonite zone. Mineral fabrics and small scale shear zones are commonly seen in amphibolite. It indicates that intrusive age of amphibolite is synchronous to the formation of mylonite zone. Mylonite zone was reactivated as ductile thrust faults and forms the hinterland dipping imbricate zone during the Cretaceous Bulkuksa Orogeny. The near parallelism of mineral stretching lineation and long axis of strain ellipes indicates that the area is affected by a homogeneous pure shear flattening together with the variable components of simple shear.

  • PDF

Source parameters of December 13, 1996 Yeongweol Earthquake (1996년 12월 13일 영월지진의 진원요소)

  • 박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.15-20
    • /
    • 1997
  • Source parameters of the December 13, 1996 Yeongweol earthquake are estimated using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows predominantly strike-slip motion with small amount of thrust component. The orientation of the fault is 180$\pm$10$^{\circ}$in strike, 50$\pm$5$^{\circ}$in dip and 150$\pm$5$^{\circ}$in rake, or 292$\pm$3$^{\circ}$in strike, 65$\pm$5$^{\circ}$in dip and 30$\pm$10$^{\circ}$ in rake. These solutions are very similar to those of earthquakes occurred at Sagju, Pohang and offshore Gunsan. The compressional axis of stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.. From the result of this study and other source mechanisms around the Korean Peninsula, we are of opinion that tectonic stress around the Korean Peninsula may be more attributed to the collision of Indian plate with the Eurasian plate than subduction of Pacific and Philippine plates.

  • PDF

Earthquake Mechanism in and around the Korean Peninsula (한반도 및 인근의 지진 메카니즘 특성)

  • Jun, Myung-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1-5
    • /
    • 2008
  • In and around the Korean Peninsula, 9 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. This indicate that not only the subducting Pacific Plate but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate.

  • PDF

A Composite Fault-plane Solution of Microearthquakes in the Yangsan Fault Area during 1996 (1996년 양산단층 일대의 미소지진을 이용한 복합단층면해)

  • Lee, Gi Hwa;Jeong, Tae Ung
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.235-240
    • /
    • 1999
  • From the seismic network data of the Korea Institute of Geology, Mining & Materials during 1995-1996, we derived a composite fault-plane solution of the microearthquakes occurred in the Yangsan fault area. The composite fault-plane solution of nine events shows the orientation of fault 15 ± 3°in strike, 60 ± 8°in dip and 140°in rake or 128 ± 3°in strike, 56 ± 8°in dip and 37°in rake. The compressional axis of the stress field trends ENE to WSW, and this field suggests strike-slip motion with thrust component. The result is consistent with the 1996 Yeong-weol event and the stress field in and around the Korean Peninsula, previously reported.

  • PDF