• Title/Summary/Keyword: Throughput and Delay Performance

Search Result 532, Processing Time 0.03 seconds

Snowball Scheme: An Alternative Admission Control Scheme for 3GPP ARQ (Snowball 방식: 3GPP ARQ를 위한 대체 수락 제어 방식)

  • Shin, Woo-Cheol;Park, Jin-Kyung;Ha, Jun;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.51-61
    • /
    • 2007
  • For provisioning reliable data transmission, the 3GPP RLC specification adopted a selective-repeat ARQ scheme assisted by a window-based admission control scheme. In the 3GPP ARQ, which is a member of the selective-repeat ARQ clan, inheres the reordering problem A long and irregular reordering time results in the degradation of throughput and delay performance, and may incur the overflow of the reordering buffer. Furthermore, the reordering time must be regulated to meet the requirements of some services which are loss-sensitive and delay-sensitive as well. Perceiving the reordering hazard, we propose an alternative, identified as snowball scheme, to the original admission control scheme of the 3GPP ARQ with aiming at deflating the occupancy of the reordering buffer. A unique feature of the snowball scheme is to reject a new DATA PDU if it is non-adjacent to any DATA PDU sojourning at the reordering buffer. Such an intentional rejection apparently reduces the occupancy of the reordering buffer while it may deteriorate the throughput and delay performance. Developing an analytical approximation method, we investigate the effect of snowball scheme on the saturated occupancy and throughput. Also, we, using a simulation method, evaluate the peak occupancy, normalized throughput and average delay in the practical environment. From the simulation results, we reveal that the snowball scheme is able to enhance occupancy performance as well as throughput performance compared with the original admission control scheme of the 3GPP ARQ.

Throughput and Delay Performance with a Cooperative Retransmission Scheme Using Distributed Beamforming

  • Kim, Hae-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.306-312
    • /
    • 2011
  • In this paper, an efficient retransmission scheme using cooperation from neighboring nodes is investigated. In the cooperative retransmission scheme, an erroneous packet is retransmitted to the destination by cooperative nodes where distributed beamforming is used to accommodate multiple cooperating nodes. A Markov model is used to analyze throughput efficiency and average delay of the proposed retransmission scheme. It is shown that the analytical results are well matched with the simulated results and improved throughput and delay performance can be achieved as compared to the traditional retransmission scheme. The performance of the proposed cooperative retransmission is investigated in the multi-hop configuration via computer simulation. The transmit power for retransmission packet is also investigated and it can be significantly reduced by using a small feedback channel.

Performance Analysis of Generalized Retransmission Request Rule for Multicopy Transmission ARQ (사본 중복 전송 ARQ에서 일반화된 재전송 요청 규칙의 성능 분석)

  • 신우철;김동준;주재환;최천원
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.319-322
    • /
    • 2002
  • In this paper, we consider a generalized rule of retransmission request, identified as (Μ, $\sigma$) rule for multicopy transmission ARQ. Following a revised rule to conform with a strict criterion for requesting a retransmission, we can reduce the probability that a packet accepted by the receiving node is still being infected with errors. In turn, such amendment invokes a degradation of delay and throughput performance. For a quantitative evaluation of (Μ, $\sigma$) rule, we develop an analytical method to calculate probability of error remains, maximum throughput, average and peak delays, and delay variation. From the numerical examples made by use of the analytical method, we observe a performance trade-off between probability of error remains and delay/throughput. We also confirm the adaptability of (Μ, $\sigma$) rule to meet various QoS requirements.

  • PDF

Delay time Analysis of Asynchronous RIT Mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT모드 MAC의 지연시간 분석)

  • Dongwon Kim;Mi-Hee Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • In recent years, research on smart factory wireless mobile communication technology that wirelessly remotely controls utilities is being actively conducted. The Wi-SUN (Wireless Smart Utility Network) Alliance proposed a Wi-SUN protocol structure suitable for building a platform such as a smart factory as a new wireless communication standardization standard based on EEE802.15.4g/e. It analyzes the performance of the IEEE802.15.4e Receiver Initiated Transmission(RIT) Mode Media Access Control (MAC) in terms of throughput and latency, and looks at considerations for efficient operation. RIT mode shows that as the check interval becomes longer, delay time and throughput decrease. It was shown that as the traffic load increases, if the RIT check interval is shortened, the delay time can be shortened and throughput can be increased. RIT mode has the advantage of low power consumption and has neutral characteristics between IEEE802.15.4 and CSL mode in terms of delay time and throughput.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

MAC Scheduling Algorithm for Efficient Management of Wireless Resources in Bluetooth Systems (블루투스 시스템에서의 효율적 무선자원관리를 위한 MAC 스케쥴링 기법)

  • 주양익;권오석;오종수;김용석;이태진;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.702-709
    • /
    • 2003
  • In this paper, we propose an efficient and QoS-aware MAC scheduling algorithm for Bluetooth, which considers both throughput and delay performance of each Master-Slave pair in scheduling decisions, and thus, attempts to maximize overall performance. The proposed algorithm, MTDPP (Modified Throughput-Delay Priority Policy), makes up for the drawbacks of T-D PP (Throughput-Delay Priority Policy) proposed in [6] and improves the performance. Since Bluetooth employs a master-driven TDD based scheduling algorithm, which is basically operated with the Round Robin policy, many slots may be wasted by POLL or NULL packets when there is no data waiting for transmission in queues. To overcome this link wastage problem, several algorithms have been proposed. Among them, queue state-based priority policy and low power mode-based algorithm can perform with high throughput and reasonable fairness. However, their performances may depend on traffic characteristics, i.e., static or dynamic, and they require additional computational and signaling overheads. In order to tackle such problems, we propose a new scheduling algorithm. Performance of our proposed algorithm is evaluated with respect to throughput and delay. Simulation results show that overall performances can be improved by selecting suitable parameters of our algorithm.

Transmission Performance Comparison and Analysis with Different Publish/Subscribe Protocol (발행-구독 프로토콜에서 전송 성능의 비교 및 분석)

  • Fan, Zujie;Kim, JaeSoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.77-80
    • /
    • 2020
  • In this paper, we analyze and compare the performance of different publish and subscribe protocols in the real application environment. This paper provides a horizontal comparison of current publish/subscribe protocols in terms of security, throughput, and delay performance. Thanks to the use of lightweight frameworks, the MQTT protocol has demonstrated excellent performance in terms of delay performance. However, the AMQP protocol has more advantages in security and throughput. Although the REST/HTTP protocol has the worst delay performance, it is excellent in terms of compatibility because it is based on the HTTP protocol.

  • PDF

Analyzing the Impact of Buffer Capacity on Crosspoint-Queued Switch Performance

  • Chen, Guo;Zhao, Youjian;Pei, Dan;Sun, Yongqian
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.523-530
    • /
    • 2016
  • We use both theoretical analysis and simulations to study the impact of crosspoint-queued (CQ) buffer size on CQ switch throughput and delay performance under different traffic models, input loads, and scheduling algorithms. In this paper, we present the following. 1) We prove the stability of CQ switch using any work-conserving scheduling algorithm. 2) We present an exact closed-form formula for the CQ switch throughput and a non-closed-form but convergent formula for its delay using static non-work-conserving random scheduling algorithms with any given buffer size under independent Bernoulli traffic. 3) We show that the above results can serve as a conservative guide on deciding the required buffer size in pure CQ switches using work-conserving algorithms such as the random scheduling, under independent Bernoulli traffic. 4) Furthermore, our simulation results under real-trace traffic show that simple round-robin and random work-conserving algorithms can achieve quite good throughput and delay performance with a feasible crosspoint buffer size. Our work reveals the impact of buffer size on the CQ switch performance and provides a theoretical guide on designing the buffer size in pure CQ switch, which is an important step toward building ultra-high-speed switch fabrics.

THE MAC LAYER PACKET SERVICE TIME DISTRIBUTIONS OF DCF IN THE IEEE 802.11 PROTOCOL

  • Han Dong-Hwan;Park Chul-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.501-515
    • /
    • 2006
  • The IEEE 802.11 protocol is the most mature technology for WLANs(Wireless Local Area Networks). However, as the number of stations increases, the delay and throughput performance of IEEE 802.11 MAC(Medium Access Control) degrades severely. In this paper, we present the comprehensive performance analysis of IEEE 802.11 MAC protocol by investigating the MAC layer packet service time when arrival packet sizes have a general probability distribution. We obtain the discrete probability distribution of the MAC layer service time. By using this, we analyze the system throughput and the MAC layer packet service time of IEEE 802.11 MAC protocol in wireless LAN environment. We take some numerical examples for the system throughput and the mean packet service time for several special distributions of arrival packet sizes.

Performance Evaluation for a Multistage Interconnection Network with Buffered $a{\times}a$ Switches under Hot-spot Environment (핫스팟을 발생시 출력 버퍼형 $a{\times}a$ 스위치로 구성된 다단 연결망의 성능분석)

  • Kim, Jung-Yoon;Shin, Tae-Zi;Yang, Myung-Kook
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.193-202
    • /
    • 2007
  • In this paper, a performance evaluation model of the Multistage Interconnection Network(MIN) with the multiple-buffered crossbar switches under Hot-spot environment is proposed and examined. Buffered switch technique is well known to solve the data collision problem of the MIN. The proposed evaluation model is developed by investigating the transfer patterns of data packets in a switch. The performance of the multiple-buffered $a{\times}a$ crossbar switch is analyzed. Steady state probability concept is used to simplify the analyzing processes. Two important parameters of the network performance, throughput and delay, are then evaluated. To validate the proposed analysis model, the simulation is carried out on a Baseline network that uses the multiple buffered crossbar switches. Less than 2% differences between analysis and simulation results are observed. It is also shown that the network performance is significantly improved when the small number of buffer spaces is given. However, the throughput elevation is getting reduced and network delay becomes increasing as more buffer spaces are added in a switch.