• Title/Summary/Keyword: Through-Wall Crack

Search Result 134, Processing Time 0.027 seconds

Applicability of Existing Fracture Initiation Models to Modern Line Pipe Steels

  • Shim, Do Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.1-24
    • /
    • 2016
  • The original fracture criteria developed by Maxey/Kiefner for axial through-wall and surface-cracked pipes have worked well for many industries for a large variety of relatively low strength and toughness materials. However, newer line pipe steels have some unusual characteristics that differ from these older materials. One example is a test data that has demonstrated that X80 line-pipe with an axial through-wall-crack can fail at pressures about 30 percent lower than predicted with commonly used analysis methods for older steels. Thus, it is essential to review the currently available models and investigate the applicability of these models to newer high-strength line pipe materials. In this paper, the available models for predicting the failure behavior of axial-cracked pipes (through-wall-cracked and external surface-cracked pipes) were reviewed. Furthermore, the applicability of these models to high-strength steel pipes was investigated by analyzing limited full-scale pipe fracture initiation test results. Based on the analyzed results, the shortcomings of the available models were identified. For both through-wall and surface cracks, the major shortcomings were related to the characterization of the material toughness, which generally leads to non-conservative predictions in the J-T analyses. The findings in this paper may be limited to the test data that were consider for this study. The requisite characteristics of a potential model were also identified in the present paper.

Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend (축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측)

  • Song, Tae-Kwang;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.

Coalescence Pressure of Steam Generator Tubes with Two Different-Sized Collinear Axial Through-Wall Clacks (길이가 다른 두 개의 축방향 관통균열이 동일선상에 존재하는 증기발생기 세관의 균열 합체 압력)

  • Huh Nam-Su;Chang Yoon-Suk;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1255-1260
    • /
    • 2006
  • To maintain the structural integrity of steam generator tubes, 40% of wall thickness plugging criterion has been developed. The approach is for the steam generator tube with single crack, so that the interaction effect of multiple cracks can not be considered. Although, recently, several approaches have been proposed to assess the integrity of steam generator tube with two identical cracks whilst actual multiple cracks reveal more complex shape. In this paper, the coalescence pressure of steam generator tube containing multiple cracks of different length is evaluated based on the detailed 3-dimensional (3-D) elastic-plastic finite element (FE) analyses. In terms of the crack shape, two collinear axial through-wall cracks with different length were considered. Furthermore, the resulting FE coalescence pressures are compared with FE coalescence pressures and experimental results for two identical collinear axial through-wall cracks to quantify the effect of crack length ratio on failure behavior of steam generator tube with multiple cracks. Finally, based on 3-D FE results, the coalescence evaluation diagrams were proposed.

An Engineering Method for Non-Linear Fracture Mechanics Analysis of Circumferential Through-Wall Cracked Pipes Under Internal Pressure (내압이 작용하는 원주방향 관통균열 배관의 비선형 파괴역학 해석법)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1099-1106
    • /
    • 2002
  • This paper provides engineering J-integral and crack opening displacement (COD) estimation equations for circumferential through-wall cracked pipes under internal pressure and under combined internal pressure and bending. Based on selected 3-D finite element calculations for the circumferential through-wall cracked pipes under internal pressure using the idealized power law materials, the elastic and plastic influence functions for fully plastic J-integral and COD solutions are found as a function of the normalized crack length and the mean radius-to-thickness ratio. These developed GE/EPRI-type solutions are then re-formulated based on the enhanced reference stress method. Such re-formulation not only provides simpler equations for J-integral and COD estimations, but also can be easily extended to combined internal pressure and bending. The proposed equations are compared with elastic-plastic finite element results using actual stress-strain data, which shows overall excellent agreement.

Plastic Limit Pressure Solutions for Cracked Pipes Using 3-D Finite Element Method (3차원 유한요소해석을 통해 도출한 균열배관의 소성한계압력식)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Based on detailed FE limit analyses, the present paper provides tractable approximations fer plastic limit pressure solutions fur axially through-wall-cracked pipe; axially (inner) surface-cracked pipe; circumferentially through-wall-cracked pipe; and circumferentially (inner) surface-cracked pipe. In particular, for surface crack problems, the effect of the crack shape, the semi-elliptical shape or the rectangular shape, on the limit pressure is quantified. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach.

Comparison of Stress Intensity Factors for Cylindrical Structure with Circumferential Through-Wall Cracks subjected to Tensile Load (원주방향 관통균열이 존재하는 원통형 구조물의 인장하중에 의한 응력확대계수 비교)

  • Dal Woo Jung;Chang Kyun Oh;Hyun Su Kim;Hyeong Do Kweon;Jun Seok Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • To date, a number of stress intensity factor (SIF) solutions have been proposed for the cylindrical structure with circumferential through-wall cracks. However, each solution has a different format as well as applicable range. It is also known that there is a significant difference in predicted SIF values depending on the shape of the structure and the size of the crack. In this study, the applicability of various SIF solutions was analyzed by comparing the finite element analysis results for the case where a tensile load is applied to the cylindrical structure with circumferential through-wall crack. It is found that the calculated SIF gradually decreases and converges to a certain value with increasing length-to-radius ratio. Therefore, an appropriate length-to-radius ratio should be set in consideration of the dimensions of the actual cylindrical structure. For piping with sufficiently long cylinder, the ASME solution is found to be the most appropriate, and for a short cylinder, the API solution should be applied. On the other hand, the WEC solution requires careful attention to its application.

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

New Engineering J and COD Estimation Method for Circumferential Through-Wall Cracked Pipes-Combined Tension and Bending Load (원주방향 관통균열이 존재하는 배관의 새로운 J-적분 및 COD 계산식-인장하중과 굽힘모멘트가 동시에 작용하는 경우)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.85-90
    • /
    • 2001
  • In order to apply the Leak-Before-Break(LBB)concept to nuclear piping, accurate estimation of J-integral and crack opening displacement(COD) is essential for complex loading, such as combined tension and bending. This paper proposes a new engineering method to estimate J-integral and the COD for circumferential through-wall cracked pipes subject to combined tension and bending loading. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements.

  • PDF