• Title/Summary/Keyword: Throttle Control

검색결과 175건 처리시간 0.018초

TCS용 스로틀 액츄에이터 제어 시스템 (Control System of Throttle Actrator for TCS)

  • 송재복;김효준;민덕인
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

BLDC 모터를 이용한 전자 스로틀 밸브 제어 (Electronic Throttle Valve Control Using BLDC Motor)

  • 권용찬;박종원;조학래;손정기;권순재
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.163-165
    • /
    • 2006
  • Electronic throttle control(ETC) is critical to drive ability, fuel economy and emission performance of present day passenger vehicles. Until now, many automobile engineer and company have been development electronic throttle controller and control algorism, such as adaptive control, sliding control, nonlinear and so on. But there are almost electronic throttle control using DC motor or stepping motor. This paper is the design of an electronic throttle controller and electronic throttle valve control using BLDC motor instead of DC motor.

  • PDF

비선형 다이나믹 인버전을 이용한 전자식 스로틀 제어 (Nonlinear Dynamic Inversion Based Control for Electronic Throttle)

  • 양인석;송무근;이동익
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.8-14
    • /
    • 2012
  • "Throttle-by-Wire" is an electronic throttle system in which mechanical cables and hydraulics are replaced by a fieldbus network, electric motors and sensors. It is crucial for an electronic throttle to design a controller that can offer an accurate and fast reference tracking performance in the presence of nonlinearities, such as friction in the gearbox and "limp-home" nonlinearity. This paper presents a nonlinear dynamic inversion based control algorithm for electronic throttle systems. Using the proposed method, the specified control performance can be achieved by canceling inherent nonlinear characteristics of the electronic throttle system. The control performance is investigated through a set of simulation results.

Actuator Control of Throttle Valve of An Automobile

  • Lee, Kyung-Moon;Lee, Jung-Yong;Kim, Gun-Tae;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.602-607
    • /
    • 2004
  • Accurate and quick positioning of the throttle valve in driving situation is required to implement the Traction Control System(TCS). Also, unlike a conventional throttle valve which is connected to the accelerator directly by a wire, an Electronic Throttle Valve(ETV) is driven by a DC motor and can move dependently upon the accurate position of the accelerator. In the research, the Electronic Throttle Body(ETB) and Controller for TCS application was developed. In order to drive the DC motor, the developed controller was built and interfaced to the ECU and ETB. The PID position control algorism and developed systems are designed to realize the robust tracking control of the ETV. Actual vehicle tests with these systems and PID position control algorithm. Finally, the performance of the proposed those are evaluated with the experimental studies.

  • PDF

전자식 가속제어장치 안전기준에 대한 실험적 고찰 (An Experimental Study on the Safety Standard of Electronic Throttle Control System)

  • 윤경철;용기중
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

찻간 속도/거리제어를 위한 구동력/제동력 통합제어 (Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control)

  • 이세진;이경수
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

퍼지논리를 사용한 엔진 동력계 시스템의 트로틀 밸브 제어기 설계 및 구현 (Design and implementation of a throttle valve controller for engine dynamometer systems using fuzzy logic)

  • 신위재;이상윤
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.588-593
    • /
    • 1997
  • This paper shows a design and implementation of throttle valve controller for engine dynamometer system using fuzzy logic. Recently, we demanded the excellent measuring equipment so as to improve engine performance. The throttle valve control for engine dynamometer system is a very particular part in the engine control. Since the structure of engine dynamometer system is very complicated and has nonlinear elements which are influenced by disturbance of vibration, heating, cooling, and energy loss so on. In this paper, fuzzy logic control application have been successful in throttle valve control problem for engine dynamometer system in which the conventional control had difficulties dealing with the system. In this study, we propose a method that the control strategy uses Fuzzy Look-up table and normalization and obtained the satisfying result from realized throttle valve controller for engine dynamometer system.

  • PDF

지능형 순항 제어 시스템 모델링 및 제어 (A Modeling and Control of Intelligent Cruise Control Systems)

  • 이세진;홍진호;이경수
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

시간지연제어에 기초한 스로틀액츄에이터 시스템의 제어 (Control of throttle actuator system based on time delay control)

  • 송재복;변경석
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2081-2089
    • /
    • 1997
  • Accurate positioning of the throttle valve of a gasoline engine is required to implement various systems such as traction control system(TCS), cruise control system and drive-by-wire system. In this research, position control system has been developed for the throttle actuator system that uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive the DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Also, time delay control(TDC) law has been used as a basic control algorithm. A method of varying the reference model of the TDC according to the size of change in target throttle angle is proposed here. The simulation and experimental results show that both overshoot prevention and fast response are achieved by the TDC technique with this variable reference model.

차량 드로틀 보디 전장부품의 품질관리 성능시험 알고리즘 개발 (Development of Algorithm of Surge Test for Quality Control on Electrical Parts of Throttle Body in Automobiles)

  • 손재환;김태한
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.67-72
    • /
    • 2006
  • This study is on the development of algorithm of surge test for quality control on electrical parts of throttle body in automobiles with internal combustion engine, not only to know its condition to be good or not, but also jugding its condition to be classified into six types. To know whether its condition to be good or not, comparing and analyzing between two waveforms generated from master and test coil of throttle body. If test net area is below 20% of master area, the condition of test coil is good. By analyzing test coil waveform to master coil waveform, the condition of test coil into winding badness, insulation badness, layer and corona discharge, short badness should known. Therefore quality control system on electrical parts of throttle body should be developed.

  • PDF