• Title/Summary/Keyword: Throat Diameter

Search Result 62, Processing Time 0.027 seconds

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration (2차목 초음속 디퓨저의 형상 변화에 따른 성능에 관한 실험적 연구)

  • Jeon, Jun Su;Kim, Wan Chan;Yeoun, Hae In;Kim, Min Sang;Ko, Young Sung;Han, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Second throat supersonic exhaust diffusers (STEDs) were designed to simulate high-altitude conditions according to the normal-shock model. Experimental studies were performed on the STEDs to investigate how performance characteristics varied with the length and diameter of the STED using high-pressure nitrogen gas. The variation in performance due to length indicated that the performance of the STED could be very slightly improved by adjusting the diffuser inlet length ($L_d$), and it could be significantly improved by optimizing the second throat length ratio ($L_{st}/D_{st}$) and the divergence length ($L_s$). The starting and vacuum chamber pressures exhibited the highest level of performance near ($A_d/A_{st}$) of the design point.

Numerical and experimental investigation of non-stationary processes in the supersonic gas ejector

  • Tsipenko, Anton;Kartovitskiy, Lev;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.469-473
    • /
    • 2009
  • The supersonic gas ejector, as gas dynamic appliance, has been applied for a long time because of simplicity and reliability. However, for the prediction of ejector performances with given parameters, that is, working gas pressure and the nozzle shape, it is necessary to raise accuracy of modelling for properties of ejector gas flow. The purpose of the represented work is to compare one-dimensional modelling and numerical results with experimental results. The ejector with a conic nozzle has been designed and tested (Mach number at the nozzle exit section was 3.31, the nozzle throat diameter - 6 mm). Working gas - nitrogen, was brought from system of gas bottles. Diameter of the mixture chamber at the nozzle exit section was limited by condensation temperature of nitrogen and equaled 20 mm. The one-dimensional theory predicted the minimal starting pressure equaled 8.18 bar (absolute) and 0.051 bar in the vacuum chamber. Accordingly the minimal starting pressure was 9.055 bar and 0.057 in the vacuum chamber bar have been fixed in experiment.

  • PDF

An Experimental Study on Design and Starting Characteristics of a Sub-scale Diffuser for Simulating High-Altitude Environment (고고도 환경 모사용 축소형 디퓨저 설계 및 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Yang, Jae-Jun;Kim, Sun-Jin;Kim, Jung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-28
    • /
    • 2009
  • This experimental study was performed to find the important design parameters and the starting characteristics of a supersonic exhaust diffuser. The experimental study was carried out on a scaled down model of straight cylindrical supersonic exhaust diffuser, in order to evaluate the effects of operating fluid(air, nitrogen), the diffuser inlet area over the primary nozzle throat area($A_d/A_t$), the inlet pressure of primary nozzle, diffuser length over diffuser inner diameter($L_d/D_d$) and existence or nonexistence of diffuser divergence. The test results showed that the starting pressure increased with decrease in diameter of primary nozzle, and the measured starting pressure of the diffuser had approximately 90~98% efficiency as compared with the predicted starting pressure. Also, the diffuser was started at all case, regardless of $L_d/D_d$ (above 8.4) and diffuser divergence. The result of this study can be used as an essential database for developing a simulated high-altitude facility for real-scale model.

Histopathological Diversity in Parotidectomy Materials in Turkish Population: Clinicopathologic Analysis and Demographic Features of 136 Cases in a Tertiary Care Hospital

  • Altinay, Serdar;Taskın, Umit;Sar, Mehmet;Aydin, Salih;Oktay, Mehmet Faruk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5701-5707
    • /
    • 2014
  • Background: Salivary gland tumours, which account for approximately 3% of head-neck cancers, are a heterogeneous group and thus it is difficult to identify their epidemiological characteristics. The aim of this study is to determine demographic features and histopathologic distribution of parotid neoplasms in a large sample from Turkey. Materials and Methods: This study was conducted retrospectively on 136 parotidectomy materials from operations between May 2009-May 2013. Age, gender, tumor diameter, histopathological diagnosis and surgical margin status were recorded. Results: The benign cases were 112 (82.4%), while the malignancies were 24 (17.6%). The accuracy rate of FNAC was 91%. There were 46 (33.8%) male and 90 (66.2%) female patients. Female/male ratio (M/F=0.5) was two, the Warthin (WT) tumor being more apparent in males (p<0.05). Pleomorphic adenoma (PA) was detected most frequently among benign pathologies at 61.6% (69/112), while the Warthin Tumor (WT) was detected as the second most frequent tumor at 20.5% (23/112). Mucoepidermoid carcinoma (MEC) and carcinoma ex pleomorphic adenoma (Ca ex PA) were detected at equal frequency at 20.8% (5/24) among malign tumors. These were followed by acinic cell carcinoma at 16.7% (4/24). While the surgical margin was positive in ten patients with malignant tumors (41.7%), all of the benign tumors were negative (p<0.01). No significant difference was detected in the age-gender of patients, tumor size and distribution of sites among benign and malignant groups (p>0.05). Conclusions: Pleomorphic adenoma is the most frequently reported benign tumor almost in all global literature. Yet, the distribution of malignant tumors displays geographical differences. Based on these data, we believe that our findings will provide a significant contribution to future epidemiological studies. We think that it will be beneficial to generate awareness on parotid tumors and ensure a fight against smoking as with all head-neck cancers.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

A CFD Prediction of a Micro Critical Nozzle (마이크로 임계노즐 유동의 CFD 예측)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

Hybrid Rocket Instability II (하이브리드 로켓 불안정성 II)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Kim, Young-Nam;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.86-90
    • /
    • 2012
  • In this paper, the combustion instabilities which may occur in the hybrid rocket were studied. The rocket combustor where the vortexes can be generated was designed, and the experiments were performed. The investigations about characteristics on the presence of the diaphragm, the length of the fuel, the diameter of the fuel port, the diameter of the diaphragm, the diameter of the nozzle throat, and the variation of the Ox massflow rate were conducted. The main resonant frequency of the combustion pressure is regarded by the Vortex shedding mode, and it is considered that the other resonant frequency of the pressure fluctuation is hybrid low frequency, or helmholtz mode.

  • PDF

A Numerical Analysis of Pulse-Jet Cleaning Characteristics for Ceramic Filter System Design (세라믹필터 집진장치의 역세정 시스템 설계를 위한 유동해석)

  • 정재화;서석빈;김시문;안달홍;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2003
  • A numerical analysis of the pulse-jet cleaning characteristics in a porous ceramic candle filter system was performed. To obtain the detailed velocity and pressure distribution during the cleaning process in a porous filter system, the axi-symmetric compressible Navier-Stokes equations including energy conservation equation were solved by using the FLUENT code which adopts FVM (Finite Volume Method). The effects of pulse cleaning nozzle diameter, nozzle tip position, permeability of a porous ceramic candle filter, diffuser throat diameter, and cleaning pressure on the cleaning flow characteristics were investigated extensively.