Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.
We proposed a novel method for object recognition using the Smart tag system in the previous research. We identified the object easily, but could not assure the object pose, because the threshold problem was not solved. So we propose a new method to solve this threshold problem. This method uses a smart tag to decide the threshold by recording color information of the image when the object feature is extracted. This method records the original of the object color information at the smart tag first. And then it records the object image information, the circumstance image information and the sensors information continuously when the object feature is extracted through the experiments. Finally, it estimates the current threshold by recorded information. This method can be applied the threshold to each objects. And it can solve the difficult threshold decision problem easily. To approve the possibility of our method, we implemented our approach by using easy and simple techniques as possible.
본 논문은 적외선 열영상에서 영상의 밝기와 대비 변화에 따라 적응적으로 화염 후보 영역을 검출하기 위한 적응 문턱치를 제안한다. 현장에 사용 되고 있는 화재 검출 시스템은 카메라의 설치 장소에 따라 얻어지는 영상의 밝기나 대비의 변화가 발생 하여 고정된 문턱치를 적용하는 화재 검출 알고리즘의 성능이 변화하게 되므로 환경에 적응적인 문턱치가 필요하다. 제안하는 적응 문턱치를 이용한 화염 검출 알고리즘은 화염의 특성인 온도와 동적임 특성을 분석하여 화염을 검출 한다. 실험을 위해 고정 문턱치를 이용한 화염 검출 알고리즘과 비교 하였으며 제안된 적응 문턱치를 이용한 화염 검출 알고리즘은 화염 검출률 91.42%이며 고정 문턱치를 적용 하였을 때 보다 오검출률을 약 20%가 감소한다. 그리고 영상의 밝기와 대비 변화에 의한 검출 결과가 일정함을 보여 준다.
X-선 스펙트럼 데이터는 물질의 성분과 관련이 없는 신호(백그라운드, 노이즈)들을 포함 하고 있다. XRF는 스펙트럼에서 가우시안 형태의 피크 위치와 크기를 이용하여 시료의 성분을 분석하며, 시료의 성분을 정확히 분석하기 위해서는 노이즈와 백그라운드를 제거 하여야 한다. 백그라운드를 제거하기 위한 방법으로는 SNIP, Threshold, Morphology 방법 등을 적용하고 있으며, Threshold 기법을 중에서 블록별로 각기 다른 임계값을 적용하는 Interval Threshold기법이 하나의 임계값을 적용하는 Level Threshold 방법보다 더 좋은 성능을 발휘한다. 본 논문에서는 Interval Threshold를 적용하기 위하여 웨이블릿을 이용하여 블록을 분리하는 알고리즘을 제안하였다.
Wireless sensor networks are emerging as a solution for a wide range of data gathering applications. The most difficult challenge for the design of sensor nodes is the need for significant reductions in energy consumption. The threshold methods which filter redundant and similar data can be used to save energy. In this paper, we propose the adaptive threshold method to effectively manage the energy in wireless sensor nodes. In the adaptive threshold method, wireless sensor nodes can change the thresholds dynamically as the sensing environments vary. The simulation results show that the adaptive threshold method works very effectively even when we experience the significant volatility in the data. This scheme can be used in order to monitor the malfunction in the equipment of semiconductor manufacturing line.
We propose the improved threshold current ratio method to determine the reflectivity of coated facets. The carrier recombination time used in the improved threshold current ratio method depends on the value of facet reflectivities. However, the carrier recombination time used in the conventional threshold current ratio method is constant regardless of facet reflectivities. The difference between the results of the two methods increases as the reflectivity of a coated facet decreases.
Inference for discrete event simulations usually relies on either independent replications or, if each simulation run is expensive, the method of batch means applied to a single replications. We present a new method, threshold bootstrap, which equals or exceeds the performance of independent replications or batch means. The method works by resampling runs of data created when a stationary time series crosses a threshold level, such as the sample mean of series. Computational results show that the threshold bootstrap matches or exceeds the performance of these alternative methods in estimating the standard deviation of the sample mean and producing valid confidence intervals.
In this paper, the embedded zero-tree wavelet image compression method using multi- threshold is proposed, which can reduce the scanning and symbol redundancy of the existing embedded zero-tree wavelet (EZW) method and enable more efficient coding. In the proposed scheme, a multi-threshold is constructed with the maximum absolute values from each subband decomposed by the wavelet transforms of the input image data. The multi-threshold values are compared with the threshold value T$_1$ in each pass in Successive Approximation Quantization (SAQ) to select the significant subbands, which are only used for the subsequent coding processes, therefore, can reduce the coding redundancy in the existing EZW. By the experimental results, it is verified that the proposed multi-threshold EZW method shows superior performances to the existing EZW method.
International Journal of Internet, Broadcasting and Communication
/
제14권2호
/
pp.109-118
/
2022
Workers' anomalous trajectories allow us to detect emergency situations in the workplace, such as accidents of workers, security threats, and fire. In this work, we develop a scheme to detect abnormal trajectories of workers using the edit distance on real sequence (EDR) and density method. Our anomaly detection scheme consists of two phases: offline phase and online phase. In the offline phase, we design a method to determine the algorithm parameters: distance threshold and density threshold using accumulated trajectories. In the online phase, an input trajectory is detected as normal or abnormal. To achieve this objective, neighbor density of the input trajectory is calculated using the distance threshold. Then, the input trajectory is marked as an anomaly if its density is less than the density threshold. We also evaluate performance of the proposed scheme based on the MIT Badge dataset in this work. The experimental results show that over 80 % of anomalous trajectories are detected with a precision of about 70 %, and F1-score achieves 74.68 %.
Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.