• Title/Summary/Keyword: Threshold Deformation

Search Result 58, Processing Time 0.028 seconds

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

Numerical Investigation for Cumulative Damage Assessment of a One-way RC Slab subjected to Consecutive Explosions (전산수치해석을 이용한 일방향 철근콘크리트 슬래브의 연속폭발 누적피해 평가기법 연구)

  • Ji, Hun;Sung, Seung-Hun;Chong, Jin Wung;Choi, Yoon Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.119-127
    • /
    • 2020
  • This study numerically investigated a structural behavior subjected to consecutive explosions. To this end, a small scale one-way reinforced slab (RC) with fixed-fixed boundary condition was considered as the target structure, and a commercial software, LS-DYNA, was utilized for finite element (FE) analysis. Prior to performing FE analysis, preliminary tests were carried out to verification of a computational model for the one-way RC slab. In the numerical simulation, identical blast loads were consecutively applied to the structure, and cumulative damage assessment were carried out based on its maximum dynamic displacements. As a result of the numerical simulation, it was found that maximum displacements considering permanent deformation due to a prior explosion were almost linearly increased in every explosion until the hazardous damage threshold.

Splay Elastic Constants Dependent Electro-Optic Characteristics of the Fringe Field Switching (FFS) Mode using the Liquid Crystal with Positive Dielectric Anisotropy (양의 액정을 이용한 FFS모드에서 Splay Elastic Constant에 따른 전기-광학적 특성 연구)

  • Jung, Jun-Ho;Park, Ji-Woong;An, Young-Joo;Kim, Mi-Young;Lee, Hee-Kyu;Lee, Seung-Eun;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.469-470
    • /
    • 2008
  • We have studied electro-optic characteristics as a function of splay elastic constants ($K_{11}$) in the fringe-field switching (FFS) mode using the LC with positive dielectric anisotropy. When $K_{11}$ is increased from 7.7pN to 11.7pN, a maximum transmittance is slightly increased and rising time become a little bit fast. However, operating voltage and threshold voltage is independent. In opposition to rising time, decay time is not affected by $K_{11}$. We already know that $K_{11}$ affects tilt angle of liquid crystals. Therefore, on the occasion of high $K_{11}$, liquid crystals are mainly affected by twist deformation because the higher $K_{11}$, the less tilt angle. In the FFS device, high $K_{11}$ is favorable to reduce tilt angle in on state and thus improve rising response time.

  • PDF

Effects of 3-D Fracture Tensor Parameters on Deformability of Fractured Rock Masses (삼차원 절리텐서 파라미터가 절리성 암반의 변형특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.66-81
    • /
    • 2021
  • The effects of directional fracture tensor components and first invariant of fracture tensor on deformation moduli and shear moduli of fractured rock masses is analyzed based on regression analysis performed between 3-D fracture tensor parameters and deformability of DFN blocks. Using one or two deterministic joint sets, a total of 224 3-D discrete fracture network (DFN) cube blocks were generated with various configurations of deterministic density and probabilistic size distribution. The fracture tensor parameters were calculated for each generated DFN systems. Also, deformability moduli with respect to three perpendicular direction of the DFN cube blocks were estimated based on distinct element method. The larger the first invariant of fracture tensor, the smaller the values for the deformability moduli of the DFN blocks. These deformability properties present an asymptotic pattern above the certain threshold. It is found that power-law function describes the relationship between the directional deformability moduli and the corresponding fracture tensor components estimated in same direction.

A Study on Characteristics of Passenger Injury for Effective Impact Speed in Vehicles Frontal Collision and Rear-ender (차량 정면충돌 및 추돌시 유효충돌속도에 따른 탑승자 상해특성에 관한 연구)

  • Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • Recently, various research studies on frontal collision and rear-ender which occur more frequently compared to others are underway as the public interest on them is growing. This study analyzes scientifically the relationship between effective impact speed and injury incidence for vehicle crash accident reconstruction and presents a relevant model formula. Because real vehicle experiments have certain limitations such as possible injuries, this study efforts to collect and analyze as many materials as possible to substitute real vehicle experiments, including data from various collision tests and human experiments. As a result, this study present a threshold in which head-on collisions and rear impacts do not cause injuries under 7 km/h of effective impact speed, and suggests a model formula showing that injury extent is linearly proportional to effective impact speed through collision speed and amount of plastic deformation. In conclusion, a model formula for estimating effective impact speed and injury incidence newly proposed in this study is expected to be used as a minimum standard of judgment in disputes on the injury extent of passenger in head-on collisions and rear impacts. Furthermore its availability in terms of technological analysis in legal arguments is expected to be very high if this study will be enhanced by referring to scientific analyses of various real accidents so as to apply it in various types of collision accidents.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.