• Title/Summary/Keyword: Three-point loading test

Search Result 116, Processing Time 0.024 seconds

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T.;Attard, Mario M.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.499-516
    • /
    • 2005
  • A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis

  • Kweon, Hyeong Do;Kim, Jin Weon;Song, Ohseop;Oh, Dongho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.647-656
    • /
    • 2021
  • Knowing a material's true stress-strain curve is essential for performing a nonlinear finite element analysis to solve an elastoplastic problem. This study presents a simple methodology to determine the true stress-strain curve of type 304 and 316 austenitic stainless steels in the full range of strain from a typical tensile test. Before necking, the true stress and strain values are directly converted from engineering stress and strain data, respectively. After necking, a true stress-strain equation is determined by iteratively conducting finite element analysis using three pieces of information at the necking and the fracture points. The Hockett-Sherby equation is proposed as an optimal stress-strain model in a non-uniform deformation region. The application to the stainless steel under different temperatures and loading conditions verifies that the strain hardening behavior of the material is adequately described by the determined equation, and the estimated engineering stress-strain curves are in good agreement with those of experiments. The presented method is intrinsically simple to use and reduces iterations because it does not require much experimental effort and adopts the approach of determining the stress-strain equation instead of correcting the individual stress at each strain point.

Experimental and analytical study on flexural behaviour of fly ash and paper sludge ash based geopolymer concrete

  • Senthamilselvi, P.;Palanisamy, T.
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • This article presents the flexural behaviour of reinforced fly ash (FA)-based geopolymer concrete (GPC) beams with partial replacement of FA for about 10% by weight with paper sludge ash (PSA). The beams were made of M35 grade concrete and cured under three curing conditions for comparison viz., ambient curing, external exposure curing, and oven curing at $60^{\circ}C$. The beams were experimentally tested at the 28th day of casting after curing by conducting two-point loading flexural test. Performance aspects such as load carrying capacity, first crack load, load-deflection and moment-curvature behaviours of both types of beams were experimentally studied and their results were compared under different curing conditions. To verify the response of reinforced GPC beams numerically, an ANSYS 13.0 finite element program was also used. The result shows that there is a good agreement between computer model failure behaviour with the experimental failure behaviour.

Crack Growth Behaviors of Cement Composites by Fractal Analysis

  • Won, Jong-Pil;Kim, Sung-Ae
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The fractal geometry is a non-Euclidean geometry which describes the naturally irregular or fragmented shapes, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cementitious composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is apparent.ent.

  • PDF

Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete (모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용)

  • 진치섭;신동익;장종철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

Design and manufacture of atomatic microwave leakage inspection system (전자 오븐의 누설 고주파 자동 검사 시스템 설계와 제작)

  • 이만형;송지복;이석희;정영철;안희태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.492-496
    • /
    • 1987
  • The testing philosophy and control schemes are investigated and applied to construct the Automatic Microwave Leakage Inspection System (AMLIS) . AMLIS is consists of three major parts such as Material Handling Mechanism, Fine Positioning Mechanism and Scanning Mechanism. The material Handling unit is designed to perform loading and unloading microwave oven onto the testing point by pneumatic cylinder and vacuum pump. The Fine positioning part includes X-Y-.THETA. table and distance sensing equipment. The scanning part is composed of five SCARA robots, which traverse X-Y-Z catesian coordinates respectively. The leakage testing probes are placed at the end of this each robot then the path and speed are both controlled via microprocessors. A performance test of this system combined with electric parts and software is done and the basic major function of system are accomplished.

  • PDF

Influence of Stacking Composition on Fatigue Bending Strenght in CFRP Composite Laminates Subjected to Impact Loading (충격하중을 받은 CFRP적층판의 피로굽힘강도에 미치는 적층구성의 영향)

  • 임광희;강기광굉;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present paper is to estimate the static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic) laminates having impact damage(FOD). The specimens which are formed with the different stacking composition, EPOXY and PEEK matirx and orthotropic and quasi-isotropic laminated plates, are prepared for this experiment. A steel ball is impacted on CFRP laminates, generating impact damages, and the three-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of the stackin composition on the fatigue strength of CFRP laminates.

  • PDF

Evaluation of Dynamic Fracture Properties of Concrete (수치해석에 의한 콘크리트 동적 파괴특성의 평가)

  • 연정흠
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.383-390
    • /
    • 1998
  • 0.93m/sec의 평균속도는 변위제어 삼점휨 실험된 콘크리트 보의 하중-변위 측정결과를 선형탄성파괴역학모델과 가상균열모델에 기초한 유한요소법으로 분석하였다. 두 모델 모두 실험결과와 잘 일치하며, 균열성장길이가 약 60∼70㎜가 될 때까지 안전된 균열성장을 보이다 불안정한 균열성장에 의해 파손되었다. 선형탄성파괴역학모델에 의한 수치해석 결과 에너지해방률은 균열성장길이에 비례해서 증가하였으며, 최대값(202N/m)에 이르게 되면 일정한 값을 유지하였다. 가상균열모델에 기초한 수치해석결과 이 연구에 사용된 하중속도와 시험편의 크기에 대해 70㎜의 완전한 파괴진행대가 평성되었으며, 이는 기존의 정적 실험결과에 대한 수치해석 결과보다 상당히 작은 값이었다.

  • PDF

Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams (축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성)

  • 이한선;고동우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

A Study for Fatigue Crack Propagation Behavior of KS50N Rail Steel under Welding Line (KS50N Rail 용접부의 피로균열 성장거동)

  • 박제용;지용찬;김진성;정경희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.553-559
    • /
    • 1998
  • This thesis studied to evaluate the fatigue behavior and propagation of rail steel under welding line. Test of crack growth was performed by all member of rail under constant amplitude loading at the structures laboratory in Hongik University. The effect of the following parameters with initiated crack length on the bottom edge of rail were studied. Here, fracture mechanics mode is opening mode. and Testing Material is KS50N Rail. From analysis and experimented result on the three Point bending in the lab, This paper presented a effect of crack growth , shape and remaining service life. Further more, according to the variable crack length, variable section and the ratio of section the fatigue behavior and propagation were studied.

  • PDF