• Title/Summary/Keyword: Three-phase power system

Search Result 920, Processing Time 0.024 seconds

A Study on Development of New 3-Phase Open-Phase Protector used in Distribution Panel (새로운 분전반용 3상 결상보호기 개발에 관한 연구)

  • Kwak, D.K.;Kim, J.H.;Park, Y.J.;Jung, D.Y.;Kim, D.K.;Kim, P.R.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.546-547
    • /
    • 2012
  • In the three-phase power system using the three-phase load, when any one-phase is open-phase, the unbalanced current flows and the single-phase power supplied by power supply produces over-current. As a result, the enormous damage and electrical fire can be given to the power system. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device (OPPD) enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase distribution panel in the field, as it manufactures into small size and light weight. As a result, the proposed OPPD minimizes the electrical fire from open-phase, and contributes for the stable driving of the power system.

  • PDF

Characteristics Analysis of 3-phase Induction Generator at the Unbalanced Load Operation (불평형 부하 운전시 3상 유도발전기 특성 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.123-128
    • /
    • 2007
  • Hydro power supplies no pollution energy, mainly induction generator has been applied at the small capacity power station. The generating power of small hydro-electric power station connects on the 22.9kV distribution system or low voltage system in the case of three-phase four-wire supply system. There are side effects of various kinds in the 3-three phase 4-wire distribution system mixing 1-phase load and 3-phase load. This system generates the voltage unbalance by unbalanced load operating condition. They have various serious effects on generator and connection system. In this paper, we analyzed what kind of operation characteristic are happened in the induction generator by customer load variation at the 3-three phase 4-wire distribution system.

A Phase-shifter for Regulating Circulating Power Flow in a Parallel-feeding AC Traction Power System

  • Choi, Kyu-Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1137-1144
    • /
    • 2014
  • A parallel-feeding AC traction power system increases the power supply capacity and decreases voltage fluctuations, but the circulating power flow caused by the phase difference between the traction substations prevents the system from being widely used. A circuit analysis shows that the circulating power flow increases almost linearly as the phase difference increases, which adds extra load to the system and results in increased power dissipation and load unbalance. In this paper, we suggest a phase shifter for the parallel-feeding AC traction power system. The phase shifter regulates the phase difference and the circulating power flow by injecting quadrature voltage which can be obtained directly from the Scott-connection transformer in the traction substation. A case study involving the phase shifter applied to the traction power system of a Korean high-speed rail system shows that a three-level phase shifter can prevent circulating power flow while the phase difference between substations increases up to 12 degrees, mitigate the load unbalance, and reduce power dissipation.

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

Scott Transformer Modeling using PSIM on the AC Substation in the Elect ric Railroad (전기철도의 교류 급전변전소에서 PSIM을 이용한 스코트변압기 모델링)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1892-1897
    • /
    • 2010
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. PSIM(Power Electronics Simulator) is optimal simulation software in field of the power electronics and provide the simple and convenient user interface. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using PSIM.

  • PDF

Comparative Analysis of 10 MW Superconducting Wind Power Generators with Three-phase and Nine-phase Armature Windings

  • Kim, Taewon;Woo, Sang-Kyun;Sung, Hae-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.343-347
    • /
    • 2019
  • When referring to weight, volume, and efficiency, a SuperConducting Synchronous Generator (SCSG) is definitely superior to conventional generators as a large-scale wind power generation system. The SCSG is connected to a full power converter that transmits the energy from the SCSG to the power grid. To reduce the current stress and system cost, the SCSG which has nine-phase armature windings with three converters is used. This paper deals with a comparative analysis of 10 MW superconducting wind power generators with three-phase and nine-phase armature windings. The stator windings of SCSGs are of various types. Using the finite element method, SCSGs are analyzed and compared in terms of the weight and volume of SCSGs, the total length of the superconducting wire, harmonics, torque performance, and efficiency. The analyzed results will be effectively utilized to design large-scale superconducting generators for wind power generation systems.

Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System (비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템)

  • Kim, Gi-Taek;Park, Tae-Yeol;Lee, Hae-Chun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

Study on Phase-Segregated Active Power Filter using PLECS

  • Zhang, Ying-Hao;Oh, Hyoung-Lok;Lim, Han-Jun;Zhang, Wen-Hao;Kim, Du-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.216-217
    • /
    • 2013
  • This paper presents an algorithm for a phase-segregated active power filter for three-phase electric system. Due to the symmetrical characteristic of three-phase system and the specialty of distribution system, the proposed algorithm focuses on the extraction of harmonic component of load current in each phase and simulations have been done by PLECS software to verify the validity of the proposed algorithm while loads are nonlinear.

  • PDF

Three-Phase Three-Wire Active Power Filter with a Detection Method of Instantaneous Positive Sequence Voltage (정상분 순시전압 검출기법을 이용한 3상 3선 능동전력필터 시스템)

  • 曺 在 延;鄭 榮 國;任 永 徹
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • This paper describes the implementation of three-phase three-wire active power filter system with a instantaneous PSD for distorted and unbalanced power conditions. The positive sequence voltage of the distorted and the unbalanced power system is calculated by the Instantaneous PSD, and phase transformation matrix of the instantaneous power theory is achieved with detected positive sequence voltage. Finally, the proposed method is experimented and tested under unbalanced nonlinear load as well as unbalanced /distorted condition in power system.

A control method and test results of utility interactive photovoltaic power generation systems (계통연계 태양광발전시스템의 제어기법 및 연계운전특성)

  • 안교상;임희천;황인호;주형준
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.549-553
    • /
    • 1999
  • This paper describes a design method of grid-connected photovoltaic power generation systems with three phase inverter. A 3-phase 50kW photovoltaic power generation system including a DC/AC inverter is designed and made in order to investigate the system performance for grid connection. Also the control scheme of a three phase current-controlled PWM inverter is presented by using d-q transformation. The experimental waveforms show that the proposed system has stable behavior with an unit power factor in utility-interactive operation.

  • PDF