• Title/Summary/Keyword: Three-party authentication

Search Result 14, Processing Time 0.026 seconds

A Lightweight Three-Party Privacy-preserving Authentication Key Exchange Protocol Using Smart Card

  • Li, Xiaowei;Zhang, Yuqing;Liu, Xuefeng;Cao, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1313-1327
    • /
    • 2013
  • How to make people keep both the confidentiality of the sensitive data and the privacy of their real identity in communication networks has been a hot topic in recent years. Researchers proposed privacy-preserving authenticated key exchange protocols (PPAKE) to answer this question. However, lots of PPAKE protocols need users to remember long secrets which are inconvenient for them. In this paper we propose a lightweight three-party privacy-preserving authentication key exchange (3PPAKE) protocol using smart card to address the problem. The advantages of the new 3PPAKE protocol are: 1. The only secrets that the users need to remember in the authentication are their short passwords; 2. Both of the users can negotiate a common key and keep their identity privacy, i.e., providing anonymity for both users in the communication; 3. It enjoys better performance in terms of computation cost and security. The security of the scheme is given in the random oracle model. To the best of our knowledge, the new protocol is the first provably secure authentication protocol which provides anonymity for both users in the three-party setting.

Analysis on Security Vulnerability of Password-based key Exchange and Authentication Protocols (패스워드 기반 키 교환 및 인증 프로토콜의 안전성에 관한 분석)

  • Park, Choon-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1403-1408
    • /
    • 2008
  • A number of three party key exchange protocols using smart card in effort to reduce server side workload and two party password based key exchange authentication protocols has been proposed. In this paper, we introduce the survey and analysis on security vulnerability of smart card based three party authenticated key exchange protocols. Furthermore, we analyze Kwak et al's password based key exchange and authentication protocols which have shown security weakness such as Shim et al's off-line password guessing attack and propose the countermeasure to deter such attack.

  • PDF

A Novel Two-party Scheme against Off-line Password Guessing Attacks using New Theorem of Chaotic maps

  • Zhu, Hongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6188-6204
    • /
    • 2017
  • Over the years, more password-based authentication key agreement schemes using chaotic maps were susceptible to attack by off-line password guess attack. This work approaches this problem by a new method--new theorem of chaotic maps: $T_{a+b}(X)+T_{a-b}(X)=2T_a(X)T_b(X)$,(a>b). In fact, this method can be used to design two-party, three-party, even in N-party intelligently. For the sake of brevity and readability, only a two-party instance: a novel Two-party Password-Authenticated Key Agreement Protocol is proposed for resisting password guess attack in this work. Compared with the related literatures recently, our proposed scheme can be not only own high efficiency and unique functionality, but is also robust to various attacks and achieves perfect forward secrecy. For capturing improved ratio of security and efficiency intuitively, the paper firstly proposes a new parameter called security/efficiency ratio(S/E Ratio). The higher the value of the S/E Ratio, the better it is. Finally, we give the security proof and the efficiency analysis of our proposed scheme.

Extended 3-Party Mutual Authentication Protocols for the Virtual Home Environment in Next Generation Mobile Networks (차세대 이동통신 네트워크의 Virtual Home Environment 구조에 적용 가능한 3자간 상호 인증 프로토콜)

  • Jeong, Jong-Min;Lee, Goo-Yeon;Lee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • In the virtual home environment (VHE), which was proposed to offer global roaming and personal service environment portability, user's profiles and service logics are conveyed from home network to visited network to provide services at the visited network. Because user's profiles and service logics may contain confidential information, some procedures for mutual authentication among entities for offering confidence are needed. For these issues, we propose and analyze three 3-Party mutual authentication Protocols adaptable to the VHE in 3G ; password based mutual authentication protocol, mutual authentication protocol with CHAP and key exchange and mutual authentication protocol with trusted third party.

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.

Practical Password-Authenticated Three-Party Key Exchange

  • Kwon, Jeong-Ok;Jeong, Ik-Rae;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.312-332
    • /
    • 2008
  • Password-based authentication key exchange (PAKE) protocols in the literature typically assume a password that is shared between a client and a server. PAKE has been applied in various environments, especially in the “client-server” applications of remotely accessed systems, such as e-banking. With the rapid developments in modern communication environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In such a peer-to-peer channel, it would be much more common for users to not share a password with others. In this paper, we consider password-based authentication key exchange in the three-party setting, where two users do not share a password between themselves but only with one server. The users make a session-key by using their different passwords with the help of the server. We propose an efficient password-based authentication key exchange protocol with different passwords that achieves forward secrecy in the standard model. The protocol requires parties to only memorize human-memorable passwords; all other information that is necessary to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only three rounds and four modular exponentiations per user. In fact, this amount of computation and the number of rounds are comparable to the most efficient password-based authentication key exchange protocol in the random-oracle model. The dispensation of random oracles in the protocol does not require the security of any expensive signature schemes or zero-knowlegde proofs.

Multi-party Password-Authenticated Key Exchange Scheme with Privacy Preservation for Mobile Environment

  • Lu, Chung-Fu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5135-5149
    • /
    • 2015
  • Communications among multi-party must be fast, cost effective and secure. Today's computing environments such as internet conference, multi-user games and many more applications involve multi-party. All participants together establish a common session key to enable multi-party and secure exchange of messages. Multi-party password-based authenticated key exchange scheme allows users to communicate securely over an insecure network by using easy-to-remember password. Kwon et al. proposed a practical three-party password-based authenticated key exchange (3-PAKE) scheme to allow two users to establish a session key through a server without pre-sharing a password between users. However, Kwon et al.'s scheme cannot meet the security requirements of key authentication, key confirmation and anonymity. In this paper, we present a novel, simple and efficient multi-party password-based authenticated key exchange (M-PAKE) scheme based on the elliptic curve cryptography for mobile environment. Our proposed scheme only requires two round-messages. Furthermore, the proposed scheme not only satisfies security requirements for PAKE scheme but also achieves efficient computation and communication.

Study on the Improvement about User Authentication of Android Third Party Application Through the Vulnerability in Google Voice (구글 보이스 취약점을 통한 안드로이드 서드 파티 어플리케이션의 사용자 인증 개선방안 연구)

  • Lee, Seyeong;Park, Jaekyun;Hong, Sungdae;Choi, Hyoungki
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • In the Android market, a large portion of the market share consists of third party applications, but not much research has been performed in this respect. Of these applications, mobile Voice Over IP (VoIP) applications are one of the types of applications that are used the most. In this paper, we focus on user authentication methods for three representative applications of the Google Voice service, which is a famous mobile VoIP application. Then, with respect to the Android file system, we developed a method to store and to send user information for authentication. Finally, we demonstrate a vulnerability in the mechanism and propose an improved mechanism for user authentication by using hash chaining and an elliptic curve Diffie-Hellman key exchange.

Three-Party Authenticated Key Exchange Protocol using Smartcards (스마트카드를 이용한 3자 참여 인증된 키교환 프로토콜)

  • Jeon, Il-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.73-80
    • /
    • 2006
  • Recently, Sun et el. proposed a three-party authenticated key exchange protocol using the public key of the server and the derived verifier from the Password of a user. This paper proposes a password-based three-party authenticated key exchange protocol using smartcards. Since the proposed protocol has very low computation cost by using XOR and hash function operation instead of the public key operation, and reduces the count of message transmission to 20% compared with the protocol of Sun et el., it can execute an effective authenticated key exchange. Furthermore, the proposed protocol is safe from password guessing attack by not saving passwords in the server, and it is also safe from server compromise attack because the server cannot know the shared session key between the two users.

An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Xiong, Ling;Peng, Daiyuan;Peng, Tu;Liang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6169-6187
    • /
    • 2017
  • With the fast growth of mobile services, Mobile Cloud Computing(MCC) has gained a great deal of attention from researchers in the academic and industrial field. User authentication and privacy are significant issues in MCC environment. Recently, Tsai and Lo proposed a privacy-aware authentication scheme for distributed MCC services, which claimed to support mutual authentication and user anonymity. However, Irshad et.al. pointed out this scheme cannot achieve desired security goals and improved it. Unfortunately, this paper shall show that security features of Irshad et.al.'s scheme are achieved at the price of multiple time-consuming operations, such as three bilinear pairing operations, one map-to-point hash function operation, etc. Besides, it still suffers from two minor design flaws, including incapability of achieving three-factor security and no user revocation and re-registration. To address these issues, an enhanced and provably secure authentication scheme for distributed MCC services will be designed in this work. The proposed scheme can meet all desirable security requirements and is able to resist against various kinds of attacks. Moreover, compared with previously proposed schemes, the proposed scheme provides more security features while achieving lower computation and communication costs.