• 제목/요약/키워드: Three-parameter Weibull distribution

검색결과 61건 처리시간 0.021초

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.419-430
    • /
    • 2020
  • Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.

A Mathematical model to estimate the wind power using three parameter Weibull distribution

  • Seshaiah, C.V.;Sukkiramathi, K.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.393-408
    • /
    • 2016
  • Weibull distribution is a suitable distribution to use in modeling the life time data. It has been found to be a exact fit for the empirical distribution of the wind speed measurement samples. In brief this paper consist of important properties and characters of Weibull distribution. Also we discuss the application of Weibull distribution to wind speed measurements and derive an expression for the probability distribution of the power produced by a wind turbine at a fixed location, so that the modeling problem reduces to collecting data to estimate the three parameters of the Weibull distribution using Maximum likelihood Method.

Evaluation of wind power potential for selecting suitable wind turbine

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.311-319
    • /
    • 2020
  • India is a developing nation and heavily spends on the development of wind power plants to meet the national energy demand. The objective of this paper is to investigate wind power potential of Ennore site using wind data collected over a period of two years by three parameter Weibull distribution. The Weibull parameters are estimated using maximum likelihood, least square method and moment method and the accuracy is determined using R2 and root mean square error values. The site specific capacity factor is calculated by the mathematical model developed by three parameter Weibull distribution at different hub heights above the ground level. At last, the wind energy economic analysis is carried out using capacity factor at 30 m, 40 m and 50 m height for different wind turbine models. The analysis showed that the site has potential to install utility wind turbines to generate energy at the lowest cost per kilowatt-hour at height of 50 m. This research provides information of wind characteristics of potential sites and helps in selecting suitable wind turbine.

Weibull 확률분포함수(確率分布函數)의 매개변수(媒介變數) 추정(推定)과 신뢰한계(信賴限界) 유도(誘導) (Parameter Estimation and Confidence Limits for the WeibulI Distribution)

  • 허준행
    • 대한토목학회논문집
    • /
    • 제13권4호
    • /
    • pp.141-150
    • /
    • 1993
  • 본 연구에서는 Weibull 확률분포함수의 매개변수 추정방법을 적용하였으며, 재현기간별 신뢰한계를 구하기 위한 점근분산식(漸近分散式)을 유도하였다. 각 과정은 기존의 모멘트법, 최우도법, 확률가중 모멘트법(Probability weighted moments)개념에 기초하여 유도하였으며, 유도된 식들을 실제 홍수자료에 적용하였다.

  • PDF

Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok;Han, Jun-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.349-361
    • /
    • 2009
  • In this paper, we derive the approximate maximum likelihood estimators of the shape parameter and the scale parameter in a Weibull distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We develop three modified empirical distribution function type tests for the Weibull distribution based on multiply Type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.

Approximate Maximum Likelihood Estimation for the Three-Parameter Weibull Distribution

  • Kang, S.B.;Cho, Y.S.;Choi, S.H.
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.209-217
    • /
    • 2001
  • We obtain the approximate maximum likelihood estimators (AMLEs) for the scale and location parameters $\theta$ and $\mu$ in the three-parameter Weibull distribution based on Type-II censored samples. We also compare the AMLEs with the modified maximum likelihood estimators (MMLEs) in the sense of the mean squared error (MSE) based on complete sample.

  • PDF

우리나라 해역별 해양환경에 최적화된 확률모형 개발 (Development of Probabilistic Models Optimized for Korean Marine Environment Varying from Sea to Sea Based on the Three-parameter Weibull Distribution)

  • 조용준
    • 한국해안·해양공학회논문집
    • /
    • 제36권1호
    • /
    • pp.20-36
    • /
    • 2024
  • 요 지 : 본 연구에서는 먼저 우리나라 해역별 해양환경 특성이 담긴 장기 파랑 관측자료로부터 Goda 모형을 활용하여 파력과 양력 시계열자료를 생성하였다. 이어 이렇게 생성된 시계열자료부터 Three-parameter Weibull distribution에 기반한 파력과 양력 확률모형을 개발하였다. 해역별로 다른 우리나라 해양환경은 파력과 양력 확률모형 모수에서도 그 차이를 확연하게 드러내었다. 충분히 발달한 풍성 파가 우월한 남해안의 경우 큰 Scale Coefficient, 작은 Location Coefficient, 1.3 전후의 Shape Coefficient로 특정되는 것을 확인하였다. 이에 비해 파랑의 성장이 취송거리에 의해 제한되는 서해를 마주하고 있는 군산의 경우 작은 Scale Coefficient, 큰 Location Coefficient, 2.0 전후의 Shape Coefficient로 특정되었다. 서해와 남해가 만나는 해역을 마주하고 있는 목포의 경우 작은 Scale Coefficient, 큰 Location Coefficient, 제일 작은 Shape Coefficient를 지녀 남해와 서해의 해양환경이 혼재한다는 사실도 확인할 수 있었다.

복합재료 피로 수명 분포에 관한 고찰 (Analysis on fatigue life distribution of composite materials)

  • 황운봉;한경섭
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.790-805
    • /
    • 1988
  • 본 연구에서는 유리섬유 강화 에폭시 복합재료의 파괴 강도와 피로 수명을 정 규분포, 로그 정규 분포와 2모수 및 3모수 Weibull 분포 함수의 기대값으로 살펴 보았 다. 2연속 응력 피로 실험 [작은 응력에서 큰 응력으로의 실험(low-high test), 큰 응력에서 작은 응력으로의 실험(high-low test)]의 결과도 분포 함수들을 사용하여 분 석하였다. 비통계학적 누적 손상 법칙들(non-statistical cumulative damage rules) 을 2연속 응력 피로 수명 분산 예측에 이용하기 위해서 동등 순위 가정(equal rank assumption)을 확장하여 수정하였다. 수정한 누적 손상 모형은 Miner의 법칙, Brou- tman과 Sahu의 손상모형 및 Hashin과 Rotem의 모형 등이다.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.