• 제목/요약/키워드: Three-dimensional velocity components

검색결과 91건 처리시간 0.024초

유동속도계측을 위한 5공압력프로브의 새로운 교정 알고리듬 (A New Calibration Algorithm of a Five-Hole Pressure Probe for Flow Velocity Measurement)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.18-25
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe necessary for calculating three-dimensional flow velocity components. The new data reduction method Includes a look-up, a geometry transformation such as the translation and reflection of nodes, and a binary search algorithm. This new calibration map was applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, this data reduction method showed a perfect performance without any kind of interpolation errors In calculating yaw and pitch angle from the calibration map.

  • PDF

Skin Effect of Rotating Magnetic Fields in Liquid Bridge

  • Zhang, Yi;Zeng, Zhong;Yao, Liping;Yokota, Yuui;Kawazoe, Yoshi;Yoshikawa, Akira
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.333-343
    • /
    • 2017
  • A rotating magnetic field (RMF) ${\Phi}_1-{\Phi}_2$ model was developed in consideration of the skin effect. The rotating magnetic field's induced three-dimensional flow was simulated numerically, and the influence of the skin effect was investigated. The rotating magnetic field drives the rotating convection in the azimuthal direction, and a secondary convection appears in the radial-meridional direction. The results indicate that ignoring the skin effect results in a smaller azimuthal velocity component and larger radial and axial velocity components, and that the deviation becomes more obvious with the larger dimensionless shielding parameter K.

대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석 (Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석 (ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE)

  • 이재룡;박익규;김정우
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

Multiepoch Optical Images of IRC+10216 Tell about the Central Star and the Adjacent Environment

  • Kim, Hyosun;Lee, Ho-Gyu;Ohyama, Youichi;Kim, Ji Hoon;Scicluna, Peter;Chu, You-Hua;Mauron, Nicolas;Ueta, Toshiya
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.36.1-37
    • /
    • 2021
  • Six images of IRC+10216 taken by the Hubble Space Telescope at three epochs in 2001, 2011, and 2016 are compared in the rest frame of the central carbon star. An accurate astrometry has been achieved with the help of Gaia Data Release 2. The positions of the carbon star in the individual epochs are determined using its known proper motion, defining the rest frame of the star. In 2016, a local brightness peak with compact and red nature is detected at the stellar position. A comparison of the color maps between 2016 and 2011 epochs reveals that the reddest spot moved along with the star, suggesting a possibility of its being the dusty material surrounding the carbon star. Relatively red, ambient region is distributed in an Ω shape and well corresponds to the dusty disk previously suggested based on near-infrared polarization observations. In a larger scale, differential proper motion of multiple ring-like pattern in the rest frame of the star is used to derive the average expansion velocity of transverse wind components, resulting in ~12.5 km s-1 (d/123 pc), where d is the distance to IRC+10216. Three dimensional geometry is implied from its comparison with the line-of-sight wind velocity determined from half-widths of submillimeter emission line profiles of abundant molecules. Uneven temporal variations in brightness for different searchlight beams and anisotropic distribution of extended halo are revisited in the context of the stellar light illumination through a porous envelope with postulated longer-term variations for a period of 10 years.

  • PDF

열선유속계를 이용한 $180^{\circ}$ 곡덕트 내 난류유동의 측정 (Measurements of Turbulent Flows in the $180^{\circ}$ Curved Duct by Hot-wire Anemometer)

  • 한성호;김원갑;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.729-734
    • /
    • 2003
  • This paper reports the characteristics of the three dimensional turbulent flow in the rectangular-sectioned 180 degree bends by Hot-wire anemometer. Grande and Kool proposed a cooling law for the measurements of the flow through the narrow passage. The authors noticed that the calibration coefficients of original method are not constant and fairly sensitive to the flow approaching angle. Measured voltages are converted to three velocity and six Reynolds stress components using the modified method in which the coefficients are treated as a function of approaching angle.

  • PDF

전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석 (Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation)

  • 바춘흘루 이치커;보르 암갈란;오양가;이재현;최희규
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.611-622
    • /
    • 2016
  • Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

Investigation of the Three-Dimensional Turbulent Flow Fields of the Gas Swirl Burner with a Cone Type Baffle Plate(I)

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.895-905
    • /
    • 2001
  • This paper presents vector fields, three dimensional mean velocities, turbulent intensities, turbulent kinetic energy and Reynolds shear stresses measured in the X-Y plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiment is carried out at the flow rates of 350 and 450ℓ/min which are equivalent to the combustion air flow rate necessary to release 15,000 kcal/hr in a gas furnace. The results show that the maximum axial mean velocity component exists around the narrow slits situated radially on the edge of a burner. Therefore, there is some entrainment of ambient air in the outer region of a burner. The maximum values of turbulent intensities occur around the narrow slits and in front of a burner up to X/R=1.5. Moreover, the turbulent intensity components show a relatively large value in the inner region due to the flow diffusion and mixing processes between the inclined baffle plate and the swirl vane. Consequently, the combustion reaction is expected to occur actively near these regions.

  • PDF

직선형 5공 압력프로브의 새로운 교정 알고리듬 적용 (Application of the New Calibration Algorithm of a Straight-Type Five-Hole Pressure Probe)

  • 김장권;오석형
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.863-869
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. This new calibration algorithm was used for velocity data reduction from the calibration map and based on the combination of a look-up, a binary search algorithm and a geometry transformation including the translation and reflection of nodes in a calibration map. The calibration map was expanded up to the application angle, ${\pm}55^{\circ}$ of a probe. This velocity data reduction method showed a perfect performance without any kind of interpolating errors in calculating yaw and pitch angles from the calibration map. Moreover, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole.

운전점이 다른 소형 축류홴의 난류 유동장 고찰 (Investigation on the Turbulent Flow-Field of a Small-size Axial Fan with Different Operating Points)

  • 김장권
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.40-47
    • /
    • 2008
  • The turbulent flow characteristics around a small-size axial fan(SSAF) for a refrigerator are strongly dependent upon the operating points. Four operating points such as $\phi$ =0.1, 0.18, 0.25 and 0.32 were adopted in this study to investigate three-dimensional turbulent flow characteristics around the SSAF by using a fiber-optic type Laser Doppler Anemometer(LDA) system. Downstream mean velocity profiles of the SSAF along the radial distance show that axial and tangential velocity components exist predominantly, except $\phi$ = 0.1, and have a maximum value at $r/R{\fallingdotseq}0.8$, but radial velocity component having a relatively small value only turns flow direction to the outside or the central part of the SSAF. The turbulent intensity shows that the radial component exists most greatly after $r/R{\fallingdotseq}0.5$. Downstream turbulent kinetic energy at $\phi$ = 0.25 and 0.32 together has the largest peak value at $r/R{\fallingdotseq}0.9$.

  • PDF