• Title/Summary/Keyword: Three-dimensional surfaces

Search Result 406, Processing Time 0.02 seconds

Classification of Ruled Surfaces with Non-degenerate Second Fundamental Forms in Lorentz-Minkowski 3-Spaces

  • Jung, Sunmi;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.579-593
    • /
    • 2007
  • In this paper, we study some properties of ruled surfaces in a three-dimensional Lorentz-Minkowski space related to their Gaussian curvature, the second Gaussian curvature and the mean curvature. Furthermore, we examine the ruled surfaces in a three-dimensional Lorentz-Minkowski space satisfying the Jacobi condition formed with those curvatures, which are called the II-W and the II-G ruled surfaces and give a classification of such ruled surfaces in a three-dimensional Lorentz-Minkowski space.

  • PDF

Hexahedral Mesh Generation by Sweeping and Grafting Algorithm (스위핑과 접목 알고리즘은 이용한 육면체 요소망의 생성)

  • 권기연;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.125-132
    • /
    • 2001
  • An algorithm for generating all hexahedral meshes for three dimensional objects has been presented. This algorithm is based on the sweeping and the grafting method. In sweeping process internal nodes generating method has been modified by employing the distances between nodes on connecting surfaces and on source surfaces. In addition to the sweeping processes grafting algorithm is also modified to obtain more effective meshes by refining elements near grafting surfaces. With this method two and a half dimensional hexahedral meshes for three dimensional objects can be generated effectively. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

  • PDF

Computer-Aided Design of Plow Working Surfaces (플라우 작업 곡면의 컴퓨터 원용 설계)

  • Chung, C.J.;Park, J.S.;Woo, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 1992
  • This study was intended to develop the design program of the working surface of moldboard-plow by use of the computer-aided design. The mathematical model of the working surfaces of moldboard-plows by use of computer graphics was developed and plotted in two dimension on three major planes. The surfaces of moldboard-plows were represented with "B-spline surface fitting" by selecting the twenty-five three-dimensional data that could well describe the working surface of moldboard-plow. The shape of moldboard-plow on three major planes was drawn for varied design parameters. The representation of the mathematical model for the working surfaces of various types of moldboard-plows was manipulated by translation, rotation and scaling about arbitrary axes in space. By using three-dimensional graphics techique to describe moldboard-plows, it was capable of plotting the three-dimensional shape of moldboard-plow easily and quickly in comparison with the existing design methods that were difficult to grasp the shape of moldboard-plow as a whole. The design theories of moldboard plow and three-dimensional computer graphic technique were applied to find out the improved reversible Jaenggi bottom. It was resulted in the newly developed shape of Jaenggi which may be used for improving the performance compared to existing ones.

  • PDF

Elliptic Linear Weingarten Surfaces

  • Kim, Young Ho
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.547-557
    • /
    • 2018
  • We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

Automatic Generation of Triangular Ginite Element Meshes on Three-Dimensional Surfaces (3차원 곡면에서 삼각형 유한요소망의 자동생성)

  • 채수원;손창현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.224-233
    • /
    • 1996
  • An automatic mesh generation scheme with triangular finite elements on three-dimensional surfaces has been developed. The surface triangulation process is performed as follows. To begin, surfaces with key nodes are transformed to two-dimensional planes and the meshes with triangular elements are constructed in these planes. Finally, the constructed meshes are transformed back to the original 3D surfaces. For the mesh generation, an irregular mesh generation scheme is employed in which local mesh densities are assigned by the user along the boundaries of the analysis domain. For this purpose a looping algorithm combined with an advancing front technique using basic operators has been developed, in which the loops are recursively subdivided into subloops with the use of the best split lines and then the basic operators generate elements. Using the split lines, the original boundaries are split recursively until each loop contains a certain number of key nodes, and then using the basic operators such as type-1 and type-2, one or two triangular elements are generated at each operation. After the triangulation process has been completed for each meshing domain, the resulting meshes are finally improved by smoothing process. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Development of the Three Dimensional Landform Display Software Using the Digital Terrain Model (수치지형정보를 애용한 지형의 3차원 표현 software 개발)

  • 이규석
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 1990
  • The digital terrain model (DTM) or digital elevation model (DEM) is commonly used in representing the continuous variation of relief over space. One of the most frequent applications is to display the three dimensional view of the landform concerned. In this paper, the altitude matrices-regular grid cell format of the elevation in Mt. Kyeryong National Park were used in developing the three dimensional view software for the first time in Korea. It required the removal of hidden lines or surfaces. To do this, it was necessary to identify those surfaces and line segments that are visible and those that are invisible. Then, only the visible portions of the landform were displayed. The assumption that line segments are used to approximate contour surfaces by polygons was used in developing the three dimensional orthographic view. In order to remove hidden lines, the visibility test and masking algorithms were used. The software was developed in the engineering workstation, SUN 3/280 at the Institute of Space Science and Astronomy using 'C' in UNIX operating system. The software developed in this paper can be used in various fields. Some of them are as follows : (1) Landscape design and planning for identifying viewshed area(line of sight maps) (2) For planning the route selection and the facility location (3) Flight simulation for pilot training (4) Other landscape planning or civil engineering purposes

  • PDF

Engineered Surface Characterization by Space Series Function (공간 계열 함수를 이용한 가공표면의 특성 연구)

  • 홍민성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.521-525
    • /
    • 1996
  • An attempt is made to characterize and synthesize engineered surfaces. The proposed method is not only an analytical tool to characterize but alsoto generate/synthesize three-dimensional surfaces. The developed method expresses important engineered surface characteristics such as the autocorrelation or pwoer spectrum density functions in terms of the two-dimensional autoregressive coefficients.

  • PDF

CMC SURFACES FOLIATED BY ELLIPSES IN EUCLIDEAN SPACE E3

  • Ali, Ahmad Tawfik
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.701-718
    • /
    • 2018
  • In this paper, we will study the constant mean curvature (CMC) surfaces foliated by ellipses in three dimensional Euclidean space $E^3$. We prove that: (1): Surfaces foliated by ellipses are CMC surfaces if and only if it is a part of generalized cylinder. (2): All surfaces foliated by ellipses are not minimal surfaces. (3): CMC surfaces foliated by ellipses are developable surfaces. (4): CMC surfaces foliated by ellipses are translation surfaces generated by a straight line and plane curve.