Browse > Article
http://dx.doi.org/10.5666/KMJ.2018.58.3.547

Elliptic Linear Weingarten Surfaces  

Kim, Young Ho (Department of Mathematics, Kyungpook National University)
Publication Information
Kyungpook Mathematical Journal / v.58, no.3, 2018 , pp. 547-557 More about this Journal
Abstract
We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.
Keywords
elliptic linear Weingarten metric; finite-type immersion; Gauss map; isoparametric surface; Ricci soliton;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.-Y. Chen, Linearly independent, orthogonal and equivariant immersions, Kodai Math. J., 14(1991), 341-349.   DOI
2 B.-Y. Chen, Total mean curvature and submanifolds of finite type, Second edition, World Scientific, Hackensack, NJ, 2015.
3 J. A. Galvez, A. Martinez and F. Milan, Linear Weingarten surfaces in $R^3$, Monatsh. Math., 138(2003), 133-144.
4 H. Hopf, Differential Geometry in the Large, Lecture Notes in Mathematics 1000, Springer-Verlag, Berlin, 1983.
5 D.-S. Kim, Y. H. Kim and D. W. Yoon, Characterizations of tori in 3-sphere, Tai-wanese J. Math., 20(2016), 1053-1064.   DOI
6 T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18(1966), 380-385.   DOI