• Title/Summary/Keyword: Three-dimensional scan

Search Result 253, Processing Time 0.033 seconds

Quantitative Analysis of Factors Affecting Cobalt Alloy Clip Artifacts in Computed Tomography

  • Sim, Sook Young;Choi, Chi Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.400-404
    • /
    • 2014
  • Objective : Clip artifacts limit the visualization of intracranial structures in CT scans from patients after aneurysmal clipping with cobalt alloy clips. This study is to analyze the parameters influencing the degree of clip artifacts. Methods : Postoperative CT scans of 60 patients with straight cobalt alloy-clipped aneurysms were analyzed for the maximal diameter of white artifacts and the angle and number of streak artifacts in axial images, and the maximal diameter of artifacts in three-dimensional (3-D) volume-rendered images. The correlation coefficient (CC) was determined between each clip artifact type and the clip blade length and clip orientation to the CT scan (angle a, lateral clip inclination in axial images; angle b, clip gradient to scan plane in lateral scout images). Results : Angle b correlated negatively with white artifacts (r=-0.589, p<0.001) and positively with the angle (r=0.636, p<0.001) and number (r=0.505, p<0.001) of streak artifacts. Artifacts in 3-D images correlated with clip blade length (r=0.454, p=0.004). Multiple linear regression analysis revealed that angle b was the major parameter influencing white artifacts and the angle and number of streak artifacts in axial images (p<0.001), whereas clip blade length was a major factor in 3-D images (p=0.034). Conclusion : Use of a clip orientation perpendicular to the scan gantry angle decreased the amount of white artifacts and allowed better visualization of the clip site.

Design of Scan Conversion Processor for 3-Dimensional Mobile Graphics Application (3차원 모바일 그래픽 응용을 위한 스캔 변환 프로세서의 설계)

  • Choi, Byeong-Yoon;Ha, Chang-Soo;Salcic, Zoran
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2107-2115
    • /
    • 2007
  • In this paper, the scan conversion processor which converts the triangle represented by three vertices into pixel-level screen coordinates, depth coordinate, and color data is designed. The processor adopts scan-line algorithm which decomposes triangle into horizontal spans and then transforms the span into pixel data. By supporting top-left filling convention, it ensures that triangles that share an edge do not produce any dropouts or overlaps between adjacent polygons. It consists of about 21,400 gates and its maximum operating frequency is about 80 Mhz under 0.35um CMOS technology. Because its maximum pixel rate is about 80 Mpixels/sec, it can be applicable to mobile graphics application.

3D Facial Scanners: How to Make the Right Choice for Orthodontists

  • Young-Soo Seo;Do-Gil Kim;Gye-Hyeong Lee;Kyungmin Clara Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • With the advances of digital scanning technology in dentistry, the interests in facial scanning in orthodontics have increased. There are many different manufacturers of facial scanners marketing to the dental practice. How do you know which one will work best for you? What questions should you be asking? We suggest a clinical guideline which may help you make an informed decision when choosing facial scanners. The characteristics of 7 facial scanners were discussed in this article. Here are some considerations for choosing a facial scanner. *Accuracy: For facial scanners to be of real value, having an appropriate camera resolution is necessary to achieve more accurate facial image representation. For orthodontic application, the scanner must create an accurate representation of an entire face. *Ease of Use: Scanner-related issues that impact their ease of use include type of light; scan type; scan time; file type generated by the scanner; unit size and foot print; and acceptance of scans by third-party providers. *Cost: Most of the expenses associated with facial scanning involve the fixed cost of purchase and maintenance. Other expenses include technical support, warranty costs, transmission fees, and supply costs. This article suggests a clinical guideline to make the right choice for facial scanner in orthodontics.

3D Precision Measurement of Scanning Moire Using Line Scan Camera (라인스캔 카메라를 이용한 3차원 정밀 측정)

  • Kim, Hyun-Ju;Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.376-380
    • /
    • 2008
  • This paper presents the Projection Moire method using a line scan camera. The high resolution feature of a line scan camera makes it possible to scan an image quickly, thus enabling a much quicker 3D profile. This method uses a high resolution line scan camera making it possible to scan an image at high speed simultaneously measuring the 3D profile of a large FOV. When using a high resolution scan camera, a full FOV is scanned, thus requiring just one movement of a projection grating. As a result, the number of grating movements is reduced drastically. The end result is a faster and more accurate 3D measurement. Moving the grating too quickly causes vibration in the imaging system, which will normally be required to apply a stitching technique when using an area scan camera. However the technique is not required when using a line scan camera. Compared with the previous techniques, it has the advantages of simple hardware without moving mechanical parts - single exposure for obtaining three-dimensional information. A method using a high resolution line scan camera can be used in mass production to measure the bump height of wafers or the bump height of package substrates.

Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography

  • Choi, Jung-Yoo Chesaria;Choi, Cham Albert;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.4
    • /
    • pp.202-212
    • /
    • 2018
  • Purpose: Bone-to-implant contact (BIC) is difficult to measure on micro-computed tomography (CT) because of artifacts that hinder accurate differentiation of the bone and implant. This study presents an advanced algorithm for measuring BIC in micro-CT acquisitions using a spiral scanning technique, with improved differentiation of bone and implant materials. Methods: Five sandblasted, large-grit, acid-etched implants were used. Three implants were subjected to surface analysis, and 2 were inserted into a New Zealand white rabbit, with each tibia receiving 1 implant. The rabbit was sacrificed after 28 days. The en bloc specimens were subjected to spiral (SkyScan 1275, Bruker) and round (SkyScan 1172, SkyScan 1275) micro-CT scanning to evaluate differences in the images resulting from the different scanning techniques. The partial volume effect (PVE) was optimized as much as possible. BIC was measured with both round and spiral scanning on the SkyScan 1275, and the results were compared. Results: Compared with the round micro-CT scanning, the spiral scanning showed much clearer images. In addition, the PVE was optimized, which allowed accurate BIC measurements to be made. Round scanning on the SkyScan 1275 resulted in higher BIC measurements than spiral scanning on the same machine; however, the higher measurements on round scanning were confirmed to be false, and were found to be the result of artifacts in the void, rather than bone. Conclusions: The results of this study indicate that spiral scanning can reduce metal artifacts, thereby allowing clear differentiation of bone and implant. Moreover, the PVE, which is a factor that inevitably hinders accurate BIC measurements, was optimized through an advanced algorithm.

Closed Reduction of Zygomatic Arch Fracture with Intraoperative Mobile Computed Tomography Scan (관골궁 골절의 정복 시 술중 이동식 CT의 유용성)

  • Kim, Myung-Good;Noh, Yong-Joon;Lee, Hoon-Young;Kim, Min-Ho;Lee, Sin-Chul
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.91-94
    • /
    • 2010
  • Purpose: The purpose of this study is to describe the usefulness of intraoperative mobile CT scans in the reduction of zygomatic arch fracture. Method: Two patients with zygomatic arch fractures were selected who were indications of closed reduction by Gilles' approach. After the reduction was done in the operating room with zygomatic arch elevator, intraoperative CT scan was done to check the extent of reduction. Additional reduction was performed according to the obtained images from the intraoperative mobile CT scan. Examination of the preoperative CT, intraoperative CT after the reduction, and postoperative plain X-ray films were done for documentation and analysis. Results: Reduction was carried out successfully to the patients without any complications. Both patients were satisfied with the postoperative cosmetic and functional outcome. Revisional surgery was not necessary during the 6 months follow up. Conclusion: The advantage of this method is that it is easier to obtain three dimensional relationships of the fracture site. Furthermore, the operator is less exposed to radiation hazards compared to other methods that obtain intraoperative images such as the C-arm. In conclusion, intraoperative mobile CT scan can be a useful surgical aid in the reduction of zygomatic arch fractures.

Quantitative analysis of three dimensional volumetric images in Chest CT (흉부 CT 검사에서 3차원 체적 영상의 정량적 분석)

  • Jang, Hyun-Cheol;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.255-260
    • /
    • 2011
  • We wanted to evaluate the usefulness of three-dimensional reconstructive images using computed tomography for rib fracture patients. The reconstruction used in clinical multi planar reformation(MPR), volume rendering technique(VRT), and image data using quantitative methods and qualitative methods were compared. Much more, the artifact shadow was minimized to reconstruct with 3D volumetric image by using an law data in the analysis of the reconstructive image and chest CT scan of the evaluation result fractures of the thoracic patient. And we could know that the fractures of the thoracic determination and three dimension volume image reconstruction time were reduced.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Kim D.S.;An Y.J.;Lee W.H.;Choi B.O.;Chang M.H.;Baek Y.J.;Choi K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics (선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석)

  • Lee, Dong Wook;Kim, Woo Sung;Sung, Ji Hyun;Kim, Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.