• Title/Summary/Keyword: Three-dimensional radiotherapy planning

Search Result 50, Processing Time 0.032 seconds

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

Study of the Optimize Radiotherapy Treatment Planning (RTP) Techniques in Patients with Early Breast Cancer; Inter-comparison of 2D and 3D (3DCRT, IMRT) Delivery Techniques (유방암 방사선치료 시 최적의 방사선치료계획기법에 대한 고찰)

  • Kim, Young-Bum;Lee, Sang-Rok;Chung, Se-Young;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Purpose: A various find of radiotherapy treatment plans have been made to determine appropriate doses for breasts, chest walls and loco-regional lymphatics in the radiotherapy of breast cancers. The aim of this study was to evaluate the optimum radiotherapy plan technique method by analyzing dose distributions qualitatively and quantitatively. Materials and Methods: To evaluate the optimum breast cancer radiotherapy plan technique, the traditional method(two dimensional method) and computed tomography image are adopted to get breast volume, and they are compared with the three-dimensional conformal radiography (3DCRT) and the intensity modulated radiotherapy (IMRT). For this, the regions of interest (ROI) such as breasts, chest walls, loco-regional lymphatics and lungs were marked on the humanoid phantom, and the computed tomography(Volume, Siemens, USA) was conducted. Using the computed tomography image obtained, radiotherapy treatment plans (XiO 5.2.1, FOCUS, USA) were made and compared with the traditional methods by applying 3DCRT and IMRT. The comparison and analysis were made by analyzing and conducting radiation dose distribution and dose-volume histogram (DVH) based upon radiotherapy techniques (2D, 3DCRT, IMRT) and point doses for the regions of interest. Again, treatment efficiency was evaluated based upon time-labor. Results: It was found that the case of using 3DCRT plan techniques by getting breast volume is more useful than the traditional methods in terms of tumor delineation, beam direction and confirmation of field boundary. Conclusion: It was possible to present the optimum radiotherapy plan techniques through qualitative and quantitative analyses based upon radiotherapy plan techniques in case of breast cancer radiotherapy. However, further studies are required for the problems with patient setup reproducibility arising from the difficulties of planning target volume (PVT) and breast immobilization in case of three-dimensional radiotherapy planning.

  • PDF

Dosimetric Comparison of Three-Dimensional Conformal, Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Dynamic Conformal Arc Therapy Techniques in Prophylactic Cranial Irradiation

  • Ismail Faruk Durmus;Dursun Esitmez;Guner Ipek Arslan;Ayse Okumus
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2023
  • Purpose: This study aimed to dosimetrically compare the technique of three-dimensional conformal radiotherapy (3D CRT), which is a traditional prophylactic cranial irradiation method, and the intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used in the last few decades with the dynamic conformal arc therapy (DCAT) technique. Methods: The 3D CRT, VMAT, IMRT, and DCAT plans were prepared with 25 Gy in 10 fractions in a Monaco planning system. The target volume and the critical organ doses were compared. A comparison of the body V2, V5, and V10 doses, monitor unit (MU), and beam on-time values was also performed. Results: In planned target volume of the brain (PTVBrain), the highest D99 dose value (P<0.001) and the most homogeneous (P=0.049) dose distribution according to the heterogeneity index were obtained using the VMAT technique. In contrast, the lowest values were obtained using the 3D CRT technique in the body V2, V5, and V10 doses. The MU values were the lowest when DCAT (P=0.001) was used. These values were 0.34% (P=0.256) lower with the 3D CRT technique, 66% (P=0.001) lower with IMRT, and 72% (P=0.001) lower with VMAT. The beam on-time values were the lowest with the 3D CRT planning (P<0.001), 3.8% (P=0.008) lower than DCAT, 65% (P=0.001) lower than VMAT planning, and 76% (P=0.001) lower than IMRT planning. Conclusions: Without sacrificing the homogeneous dose distribution and the critical organ doses in IMRTs, three to four times less treatment time, less low-dose volume, less leakage radiation, and less radiation scattering could be achieved when the DCAT technique is used similar to conventional methods. In short, DCAT, which is applicable in small target volumes, can also be successfully planned in large target volumes, such as the whole-brain.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Dosimetric comparison of IMRT versus 3DCRT for post-mastectomy chest wall irradiation

  • Rastogi, Kartick;Sharma, Shantanu;Gupta, Shivani;Agarwal, Nikesh;Bhaskar, Sandeep;Jain, Sandeep
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • Purpose: To compare the dose distribution of three-dimensional conformal radiation therapy (3DCRT) with intensity-modulated radiation therapy (IMRT) for post-mastectomy radiotherapy (PMRT) to left chest wall. Materials and Methods: One hundred and seven patients were randomised for PMRT in 3DCRT group (n = 64) and IMRT group (n = 43). All patients received 50 Gy in 25 fractions. Planning target volume (PTV) parameters-$D_{near-max}$ ($D_2$), $D_{near-min}$ ($D_{98}$), $D_{mean}$, $V_{95}$, and $V_{107}$-homogeneity index (HI), and conformity index (CI) were compared. The mean doses of lung and heart, percentage volume of ipsilateral lung receiving 5 Gy ($V_5$), 20 Gy ($V_{20}$), and 55 Gy ($V_{55}$) and that of heart receiving 5 Gy ($V_5$), 25 Gy ($V_{25}$), and 45 Gy ($V_{45}$) were extracted from dose-volume histograms and compared. Results: PTV parameters were comparable between the two groups. CI was significantly improved with IMRT (1.127 vs. 1.254, p < 0.001) but HI was similar (0.094 vs. 0.096, p = 0.83) compared to 3DCRT. IMRT in comparison to 3DCRT significantly reduced the high-dose volumes of lung ($V_{20}$, 22.09% vs. 30.16%; $V_{55}$, 5.16% vs. 10.27%; p < 0.001) and heart ($V_{25}$, 4.59% vs. 9.19%; $V_{45}$, 1.85% vs. 7.09%; p < 0.001); mean dose of lung and heart (11.39 vs. 14.22 Gy and 4.57 vs. 8.96 Gy, respectively; p < 0.001) but not the low-dose volume ($V_5$ lung, 61.48% vs. 51.05%; $V_5$ heart, 31.02% vs. 23.27%; p < 0.001). Conclusions: For left sided breast cancer, IMRT significantly improves the conformity of plan and reduce the mean dose and high-dose volumes of ipsilateral lung and heart compared to 3DCRT, but 3DCRT is superior in terms of low-dose volume.

Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer

  • Kim, Sung Joon;Lee, Jeong Won;Kang, Min Kyu;Kim, Jae-Chul;Lee, Jeong Eun;Park, Shin-Hyung;Kim, Mi Young;Lee, Seoung-Jun;Moon, Soo-Ho;Ko, Byoung-Soo
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • Purpose: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. Materials and Methods: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. Results: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. Conclusions: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.

Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel

  • Bavarnegin, Elham;Khalafi, Hossein;Sadremomtaz, Alireza;Kasesaz, Yaser;Khajeali, Azim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.189-195
    • /
    • 2017
  • Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the $R_2$ maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

Benefit of volumetric-modulated arc therapy over three-dimensional conformal radiotherapy for stage I-II extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue in the stomach: a dosimetric comparison

  • Chung, Joo-Hyun;Na, Kyoungsu;Kim, Il Han
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Purpose: To retrospectively analyze dosimetric parameters of volumetric-modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3D-CRT) delivered to extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue in the stomach (gastric MALT lymphoma) to find out advantages of VMAT and conditions for definite benefits of VMAT. Materials and Methods: Fifty patients with stage I-II gastric MALT lymphoma received VMAT (n = 14) or 3D-CRT (n = 36) between December 2005 and April 2018. Twenty-seven patients were categorized according to whether the planning target volume (PTV) overlaps kidney(s). Dosimetric parameters were analyzed by dose-volume histogram. Results: Radiation dose to the liver was definitely lower with VMAT in terms of mean dose (p = 0.026) and V15 (p = 0.008). The V15 of the left kidney was lower with VMAT (p = 0.065). For those with PTV overlapping kidney(s), the left kidney V15 was significantly lower with VMAT. Furthermore, the closer the distance between the PTV and kidneys, the less the left kidney V15 with VMAT (p = 0.037). Delineation of kidney(s) by integrating all respiratory phases had no additional benefit. Conclusions: VMAT significantly increased monitor units, reduced treatment time and radiation dose to the liver and kidneys. The benefit of VMAT was definite in reducing the left kidney V15, especially in geometrically challenging conditions of overlap or close separation between PTV and kidney(s).

Reliability estimation about quality assurance method of radiotherapy planning (방사선치료계획 정도관리 방법에 따른 신뢰도 평가)

  • Kim, Jeong-Ho;Kim, Gha-Jung;Yoo, Se-Jong;Kim, Ki-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • According as radiation therapy technique develops, standardization of radiation therapy has been complicated by the plan QA(Quality Assurance). However, plan QA tools are two type, OADT (opposite accumulation dose tool) and 3DADT (3 dimensional accumulation dose tool). OADT is not applied to evaluation of beam path. Therefore tolerance error of beam path will establish measurement value at OADT. Plan is six beam path, five irradiation field at each beam path. And beam path error is 0 degree, 0.2 degree, 0.4 degree, 0.6 degree, 0.6 degree, 0.8 degree. Plan QA accomplishes at OADT, 3DADT. The more path error increases, the more plan QA error increases. Tolerance error of OADT path is 0.357 using tolerance error of conventional plan QA. Henceforth plan QA using OADT will include beam path error. In addition, It will increase reliability through precise and various plan technique.