• Title/Summary/Keyword: Three-dimensional prototypes

Search Result 22, Processing Time 0.027 seconds

Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis (쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures (대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발)

  • Lim, Tae-Woo;Son, Yong;Yi, Shin-Wook;Kong, Hong-Jin;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

Thermal Deformation Analysis of Shadow Mask in a Flat TV and Prediction of Electron Beam Landing Shift by FEM (유한요소법에 의한 평면 TV 새도우마스크의 열변형해석 및 전자빔 오착 예측)

  • Kim, Jeong;Park, Soo-Kil;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2297-2304
    • /
    • 2002
  • Two-dimensional and three-dimensional finite element methods have been used to analyze the deformation behavior of a shadow mask due to thermal and tension load. The shadow mask inside the Braun tube of a TV set has numerous slits through which the electron beams are guided to land on the designed phosphor of red, green or blue. Its thermal deformation therefore causes landing shift of the electron beam and results in decolorization of a screen. For the realistic finite element analysis, the effective thermal conductivity and the effective elastic modulus arc calculated, and then the shadow mask is modeled as shell without slits. Next a transient thermal analysis of the shadow mask is performed, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermal deformation is followed, from which the landing shift of the electron beam is obtained. The present finite element scheme may be efficiently used to reduce thermal deformation of a shadow mask and in developing prototypes of a large screen flat TV.

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

Fabrication of Hydrophobic Surfaces with Stereolithography (SLA을 이용한 소수성 표면 제작)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • This paper presents the experimental results of hydrophobic surfaces developed using a stereolithography-based additive-manufacturing technique. The additive manufacturing technique can be used to manufacture objects with complex geometries from computer-aided design data. Several additive manufacturing methods, such as selective laser sintering, fused deposition modeling, stereolithography apparatus (SLA), and inkjet-based system, have been developed. The SLA is a form of three-dimensional printing technology used to create prototypes, patterns, and production parts in successive layers through photochemical processes. Light causes chemical monomers and oligomers to cross-link together to form objects composed of polymers. Moreover, this method is economical for fabricating surfaces with high output resolution and quality. Here, we fabricate various surfaces using different shapes using an SLA. The surfaces with micro-patterns are fabricated for 10 cases, including the biomimetic surface. The fabricated surfaces with various micro-patterns are evaluated for hydrophobicity performance based on the static contact angle. The contact angle is measured three times for each case, and the averaged value is used. The results indicate that the arrangements in a staggered structure have a larger contact angle than those in a line when the same micro-pattern is applied. Moreover, the mimetic surfaces exhibit more hydrophobic characteristics than those of artificial micro-patterns.

Investigation Into the Development Of Automatic VLM-ST (VLM-STA) Process and Its Apparatus (완전자동화된 단속적 재료 공급식 가변적층 쾌속조형공정 밀 장치 개발에 관한 연구)

  • 양동열;안동규;이상호;김효찬;박승교
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.109-119
    • /
    • 2004
  • Rapid prototyping (RP) technologies have been widely used to reduce the lead-time and development cost of new products. $VLM-_{ST}$ process has been developed to overcome the currently developed RP technologies such as a large building time, a high building cost, an additional post-processing and a large apparatus cost. $VLM-_{ST}$ process requires an additional human interaction due to the manual stacking and bonding. Hence, building time, building cost and the part quality are dependent on the skill of labor. A novel RP process, fully automated $VLM-_{ST}$ process ($VLM-_{ST}$), has been developed to improve building efficiency of the process and the human dependency of the part. The objective of this work is to propose a $VLM-_{ST}$ process and to develop an apparatus for implementation of the process. $VLM-_{ST}$ process and its apparatus have various technical novelties such as two step cutting using a rotating table, an automatic stacking method using two pilot holes and two reference shapes, a concept of automatic unit shape layer (AUSL), and an automatic bonding using the bonding roller and building magazine. In order to examine the efficiency and the applicability of the proposed process, various three-dimensional shapes, such as a piston, a human head shape and a human bust shape, were fabricated on the apparatus.

Assessment of the fit of partial frame fabricated by SLS 3D printer (국부상의치의 전해연마에 따른 SLS 3D 프린터의 적합성 평가)

  • Park, Young-Dae;Kang, Wol
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.1067-1075
    • /
    • 2019
  • Objectives: The present study aimed to compare the accuracy of removable partial denture (RPD) frameworks fabricated by selective laser sintering (SLS) before and after electropolishing. Methods: A partially edentulous mandibular model was used as the working model. Scanning of the model was performed using a dental scanner. The framework was designed using CAD software. The metal framework was formed using an SLS 3D printer. 3D scans of the two fabricated prototypes produced before and after electropolishing were overlapped with reference data. The fit was calculated based on Root Mean Square (RMS). Fabrication accuracy was verified using the paired t-test to compare the discrepancy before and after electropolishing. Results: The mean (SD) values of RMS before and after electropolishing were 126.6 (34.19) and 75.86 (21.36), respectively. There was a statistically significant difference before and after electropolishing (p<0.05). Conclusions: Metal frameworks made with SLS 3D printers showed clinically acceptable fit after electropolishing.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

Investigation into Development of Transfer Type for Variable Lamination Manufacturing Process and Apparatus (단속형 재료 공급식 가변 적층 쾌속조형공정 및 장치 개발에 관한 연구)

  • Yang, Dong-Yol;Ahn, Dong-Gyu;Lee, Sang-Ho;Choi, Hong-Seok;Park, Seung-Kyo;Chae, Hee-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.760-765
    • /
    • 2001
  • A new rapid prototyping process, as a transfer type of Variable Lamination Manufacturing by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost including the introduction and the maintenance and additional post-processing. The objective of this study is to propose a VLM-ST process and to develop an apparatus for implementation of the process. Design criteria of the apparatus were defined and the techniques were proposed to satisfy the design criterion. In order to examine the efficiency and applicability of the developed process, various three-dimensional shapes, such as a world-cup logo, a knob shape and a character, Son-o-kong, were fabricated on the apparatus in which unit shape layer (USL) was generated to build up each layer.

  • PDF

Segmentation and 3-Dimensional Reconstruction of Liver using MeVisLab (MeVisLab을 이용한 간 영역 분할 및 3차원 재구성)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1765-1772
    • /
    • 2012
  • Success rate of transplantation of body organs improved due to development of medical equipment and diagnostic technology. In particular, a liver transplant due to liver dysfunction has increased. With the development of image processing and analysis to obtain the volume for liver transplantation have increased the accuracy and efficiency. In this thesis, we try to reconstruct the regions of the liver within three dimensional images using the mevislab tool, which is effective in quick comparison and analysis of various algorithms, and in expedient development of prototypes. Liver is divided by applying threshold values and region growing method to the original image, and by removing noise and unnecessary entities through morphology and region filling, and setting of areas of interest. It is deemed that high temporal efficiency, and presentation of diverse range of comparison and analysis module application methods through usage of MeVisLab would make contribution towards expanding of baseline of medical image processing researches.