• 제목/요약/키워드: Three-dimensional numerical model

검색결과 1,587건 처리시간 0.034초

원통좌표를 이용한 주조공정의 수치해석모델 개발 (Development of a New Simulation Method of Casting Process Based on a Cylindrical Coordinate System)

  • 목진호;박성준;이진호
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.433-440
    • /
    • 2004
  • Since the numerical analysis was adopted in the mold design, lots of computational methods have been proposed for the simulations of casting processes for the various shaped molds. Today, it is possible to simulate the filling and solidification processes of most casts using the VOF technique. Though the three-dimensional numerical model based on the Cartesian coordinate system can be applied to any shape of cast, it becomes very inefficient when the three-dimensional model is applied to the cast of axi-symmetrical shape since the control volume includes at least 11 of the physical model. In addition, the more meshes should be distributed along the circumferential boundaries of curved shape in the Cartesian coordinate system fur the better results, while such curved circumferential boundary does not need to be considered in the two-dimensional cylindrical coordinate system. This motivates the present study i.e. developing a two-dimensional numerical model for the axi-symmetrically shaped casts. The SIMPLER algorithm, the VOF method, and the equivalent specific heat method have been adopted in the combined algorithm for the flow calculation, the free surface tracking, and the phase change heat transfer, respectively. The numerical model has been applied to the casting process of a pulley, and it was proven that the mesh and time effective calculation was accomplished comparing to the calculation using three-dimensional model.

선회유동을 가지는 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Swirling Premixed Lifted Flames)

  • 강성모;김용모;정재화;안달홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

열성층 배관 유동에 대한 3차원 열전달 해석 (Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow)

  • Jo Jong Chull;Kim Byung Soon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석 (Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway)

  • 김정엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF

전향 원심 송풍기의 3차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준;이상환
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

A Neoteric Three-Dimensional Geometry-Based Stochastic Model for Massive MIMO Fading Channels in Subway Tunnels

  • Jiang, Yukang;Guo, Aihuang;Zou, Jinbai;Ai, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2893-2907
    • /
    • 2019
  • Wireless mobile communication systems in subway tunnels have been widely researched these years, due to increased demand for the communication applications. As a result, an accurate model is essential to effectively evaluate the communication system performance. Thus, a neoteric three-dimensional (3D) geometry-based stochastic model (GBSM) is proposed for the massive multiple-input multiple-output (MIMO) fading channels in tunnel environment. Furthermore, the statistical properties of the channel such as space-time correlation, amplitude and phase probability density are analyzed and compared with those of the traditional two-dimensional (2D) model by numerical simulations. Finally, the ergodic capacity is investigated based on the proposed model. Numerical results show that the proposed model can describe the channel in tunnels more practically.

극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발 (Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area)

  • 이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

안정성층류에서 선택취수의 수치해석 (Numerical Simulation of Selective Withdrawal in Stably Stratified Flows)

  • 백중철
    • 한국수자원학회논문집
    • /
    • 제38권11호
    • /
    • pp.973-984
    • /
    • 2005
  • 3차원 열동수역학 모형을 개발하여 지형학적으로 복잡한 자연 저수지에서 안정한 성층류의 선택 취수를 부정류 모의하였다. 지배방정식은 2차 정확도의 유한체적법을 이용하여 해석하였다. 개발된 수치모형을 3차원 난류, 성층화된 전단층흐름에 적용하여 검정을 하였다. 수치해석결과는 실험실에서 관측된 선택취수시의 속도 및 온도분포의 일반적인 형상을 양호하게 예측하는 것으로 나타났으나, 자연 저수지에서의 흐름에 대한 적용시에는 속도의 크기를 과대모의 하는 것으로 나타났다. 수치모의에서 구해진 선택취수의 물리적 특성을 논하였다.

새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석 (A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir)

  • 전지혜;정세웅
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.